Advertisement

Coronary Plaque Types: Thin Cap Fibroatheroma, Healed Plaque, Calcified Plaque

  • Francesco Fracassi
  • Giampaolo Niccoli
Chapter

Abstract

Optical coherence tomography (OCT) is a recently developed intravascular catheter-based imaging technique able to visualize the coronary wall structures and coronary plaques with a definition similar to histology. According to the molecular composition, a coronary plaque will appear composed by structures of different signal intensity ranging from bright and lucent to fully dark aspect. Thin cap fibroatheroma is the prototype of coronary vulnerable plaque and is identified by a large lipid arc (more than 90°) covered by a fibrous cap <65 μm thick. The presence of multiple layers of different optical density identify at OCT healed plaques, lesions undergone several episodes of subclinical thrombosis and spontaneous healing. The presence of calcium generates at OCT observation low-signal areas with sharply demarcated borders.

Keywords

Optical coherence tomography Thin cap fibroatheroma Coronary vulnerability Healed plaque Layered plaque Subclinical thrombosis Calcified plaque Eruptive calcified module Superficial calcific sheet Calcified protrusion 

References

  1. 1.
    Timmis A, Townsend N, Gale C, et al. European Society of Cardiology: cardiovascular disease statistics 2017. Eur Heart J. 2018;39(7):508–79.PubMedCrossRefGoogle Scholar
  2. 2.
    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Burke AP, Virmani R. Pathophysiology of acute myocardial infarction. Med Clin North Am. 2007;91(4):553–572; ix.PubMedCrossRefGoogle Scholar
  4. 4.
    Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30(7):1282–92.PubMedCrossRefGoogle Scholar
  5. 5.
    Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol. 2003;21(11):1361–7.CrossRefGoogle Scholar
  6. 6.
    Jang IK, Bouma BE, Kang DH, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39(4):604–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Jang IK, Tearney GJ, MacNeill B, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111(12):1551–5.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Prati F, Regar E, Mintz GS, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J. 2010;31(4):401–15.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Di Vito L, Yoon JH, Kato K, et al. Comprehensive overview of definitions for optical coherence tomography-based plaque and stent analyses. Coron Artery Dis. 2014;25(2):172–85.PubMedCrossRefGoogle Scholar
  10. 10.
    Otsuka F, Joner M, Prati F, Virmani R, Narula J. Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol. 2014;11(7):379–89.PubMedCrossRefGoogle Scholar
  11. 11.
    Kato K, Yonetsu T, Jia H, et al. Nonculprit coronary plaque characteristics of chronic kidney disease. Circ Cardiovasc Imaging. 2013;6(3):448–56.PubMedCrossRefGoogle Scholar
  12. 12.
    Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59(12):1058–72.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Jia H, Abtahian F, Aguirre AD, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol. 2013;62(19):1748–58.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Sugiyama T, Yamamoto E, Fracassi F, et al. Calcified plaques in patients with acute coronary syndromes. JACC Cardiovasc Interv. 2019;12(6):531–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Yahagi K, Kolodgie FD, Otsuka F, et al. Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat Rev Cardiol. 2016;13(2):79–98.PubMedCrossRefGoogle Scholar
  16. 16.
    Fan J, Watanabe T. Inflammatory reactions in the pathogenesis of atherosclerosis. J Atheroscler Thromb. 2003;10(2):63–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Aikawa M, Rabkin E, Okada Y, et al. Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation. 1998;97(24):2433–44.PubMedCrossRefGoogle Scholar
  18. 18.
    Velican C. A dissecting view on the role of the fatty streak in the pathogenesis of human atherosclerosis: culprit or bystander? Med Interne. 1981;19(4):321–37.PubMedGoogle Scholar
  19. 19.
    McGill HC, McMahan CA, Herderick EE, et al. Effects of coronary heart disease risk factors on atherosclerosis of selected regions of the aorta and right coronary artery. PDAY Research Group. Pathobiological determinants of atherosclerosis in youth. Arterioscler Thromb Vasc Biol. 2000;20(3):836–45.PubMedCrossRefGoogle Scholar
  20. 20.
    Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106(13):1640–5.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    MacNeill BD, Jang IK, Bouma BE, et al. Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J Am Coll Cardiol. 2004;44(5):972–9.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Tearney GJ, Yabushita H, Houser SL, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107(1):113–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Otsuka F, Kramer MC, Woudstra P, et al. Natural progression of atherosclerosis from pathologic intimal thickening to late fibroatheroma in human coronary arteries: a pathology study. Atherosclerosis. 2015;241(2):772–82.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Stupka N, Kintakas C, White JD, et al. Versican processing by a disintegrin-like and metalloproteinase domain with thrombospondin-1 repeats proteinases-5 and -15 facilitates myoblast fusion. J Biol Chem. 2013;288(3):1907–17.PubMedCrossRefGoogle Scholar
  25. 25.
    Kolodgie FD, Gold HK, Burke AP, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349(24):2316–25.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Sluimer JC, Kolodgie FD, Bijnens AP, et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol. 2009;53(17):1517–27.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Virmani R, Joner M, Sakakura K. Recent highlights of ATVB: calcification. Arterioscler Thromb Vasc Biol. 2014;34(7):1329–32.PubMedCrossRefGoogle Scholar
  28. 28.
    Tenekecioglu E, Albuquerque FN, Sotomi Y, et al. Intracoronary optical coherence tomography: clinical and research applications and intravascular imaging software overview. Catheter Cardiovasc Interv. 2017;89(4):679–89.PubMedCrossRefGoogle Scholar
  29. 29.
    Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35.PubMedCrossRefGoogle Scholar
  30. 30.
    Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007;50(10):933–9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kubo T, Imanishi T, Kashiwagi M, et al. Multiple coronary lesion instability in patients with acute myocardial infarction as determined by optical coherence tomography. Am J Cardiol. 2010;105(3):318–22.PubMedCrossRefGoogle Scholar
  32. 32.
    Toutouzas K, Karanasos A, Riga M, et al. Optical coherence tomography assessment of the spatial distribution of culprit ruptured plaques and thin-cap fibroatheromas in acute coronary syndrome. EuroIntervention. 2012;8(4):477–85.PubMedCrossRefGoogle Scholar
  33. 33.
    Yonetsu T, Kakuta T, Lee T, et al. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur Heart J. 2011;32(10):1251–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Lee CW, Hwang I, Park CS, et al. Comparison of ADAMTS-1, -4 and -5 expression in culprit plaques between acute myocardial infarction and stable angina. J Clin Pathol. 2011;64(5):399–404.PubMedCrossRefGoogle Scholar
  35. 35.
    Johnson JL, Jenkins NP, Huang WC, et al. Relationship of MMP-14 and TIMP-3 expression with macrophage activation and human atherosclerotic plaque vulnerability. Mediat Inflamm. 2014;2014:276457.CrossRefGoogle Scholar
  36. 36.
    Ruggio A, Pedicino D, Flego D, et al. Correlation between CD4+CD28null T lymphocytes, regulatory T cells and plaque rupture: an optical coherence tomography study in acute coronary syndromes. Int J Cardiol. 2019;276:289–92.PubMedCrossRefGoogle Scholar
  37. 37.
    Edsfeldt A, Gonçalves I, Grufman H, et al. Impaired fibrous repair: a possible contributor to atherosclerotic plaque vulnerability in patients with type II diabetes. Arterioscler Thromb Vasc Biol. 2014;34(9):2143–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Takarada S, Imanishi T, Kubo T, et al. Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: assessment by optical coherence tomography study. Atherosclerosis. 2009;202(2):491–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Hou J, Xing L, Jia H, et al. Comparison of intensive versus moderate lipid-lowering therapy on fibrous cap and atheroma volume of coronary lipid-rich plaque using serial optical coherence tomography and intravascular ultrasound imaging. Am J Cardiol. 2016;117(5):800–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Kurihara O, Thondapu V, Kim HO, et al. Comparison of vascular response to statin therapy in patients with versus without diabetes mellitus. Am J Cardiol. 2019;123(10):1559–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Minami Y, Wang Z, Aguirre AD, et al. Clinical predictors for lack of favorable vascular response to statin therapy in patients with coronary artery disease: a serial optical coherence tomography study. J Am Heart Assoc. 2017;6(11):e006241.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Nishiguchi T, Kubo T, Tanimoto T, et al. Effect of early pitavastatin therapy on coronary fibrous-cap thickness assessed by optical coherence tomography in patients with acute coronary syndrome: the ESCORT study. JACC Cardiovasc Imaging. 2018;11(6):829–38.PubMedCrossRefGoogle Scholar
  43. 43.
    Romagnoli E, Gatto L, La Manna A, et al. Role of single OCT morphological variable in the CLIMA trial (relationship between coronary pLaque morphology of the left anterIor descending artery and long terM clinicAl outcome). J Am Coll Cardiol. 2018;72(13 Suppl):B24.CrossRefGoogle Scholar
  44. 44.
    Fracassi F, Niccoli G, Vetrugno V, et al. Optical coherence tomography and C-reactive protein in risk stratification of acute coronary syndromes. Int J Cardiol. 2019;286:7–12.PubMedCrossRefGoogle Scholar
  45. 45.
    Davies MJ. The contribution of thrombosis to the clinical expression of coronary atherosclerosis. Thromb Res. 1996;82(1):1–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Yamamoto MH, Yamashita K, Matsumura M, et al. Serial 3-vessel optical coherence tomography and intravascular ultrasound analysis of changing morphologies associated with lesion progression in patients with stable angina pectoris. Circ Cardiovasc Imaging. 2017;10(9):e006347.PubMedCrossRefGoogle Scholar
  47. 47.
    Burke AP, Kolodgie FD, Farb A, et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation. 2001;103(7):934–40.PubMedCrossRefGoogle Scholar
  48. 48.
    Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart. 1999;82(3):265–8.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Jang IK. Plaque progression: slow linear or rapid stepwise? Circ Cardiovasc Imaging. 2017;10(9):e006964.PubMedCrossRefGoogle Scholar
  50. 50.
    Fracassi F, Crea F, Sugiyama T, et al. Healed culprit plaques in acute coronary syndromes. J Am Coll Cardiol. 2019;73(18):2253–63.PubMedCrossRefGoogle Scholar
  51. 51.
    Shimokado A, Matsuo Y, Kubo T, et al. In vivo optical coherence tomography imaging and histopathology of healed coronary plaques. Atherosclerosis. 2018;275:35–42.CrossRefGoogle Scholar
  52. 52.
    Vergallo R, Porto I, D’Amario D, et al. Coronary atherosclerotic phenotype and plaque healing in patients with recurrent acute coronary syndromes compared with patients with long-term clinical stability: an in vivo optical coherence tomography study. JAMA Cardiol. 2019;  https://doi.org/10.1001/jamacardio.2019.0275.PubMedCrossRefGoogle Scholar
  53. 53.
    Detrano R, Guerci AD, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.PubMedCrossRefGoogle Scholar
  54. 54.
    Otsuka F, Sakakura K, Yahagi K, Joner M, Virmani R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol. 2014;34(4):724–36.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Burke AP, Weber DK, Kolodgie FD, Farb A, Taylor AJ, Virmani R. Pathophysiology of calcium deposition in coronary arteries. Herz. 2001;26(4):239–44.CrossRefPubMedGoogle Scholar
  56. 56.
    Friedrich GJ, Moes NY, Mühlberger VA, et al. Detection of intralesional calcium by intracoronary ultrasound depends on the histologic pattern. Am Heart J. 1994;128(3):435–41.PubMedCrossRefGoogle Scholar
  57. 57.
    Burke AP, Virmani R, Galis Z, Haudenschild CC, Muller JE. 34th Bethesda conference: task force #2--what is the pathologic basis for new atherosclerosis imaging techniques? J Am Coll Cardiol. 2003;41(11):1874–86.PubMedCrossRefGoogle Scholar
  58. 58.
    Mizukoshi M, Kubo T, Takarada S, et al. Coronary superficial and spotty calcium deposits in culprit coronary lesions of acute coronary syndrome as determined by optical coherence tomography. Am J Cardiol. 2013;112(1):34–40.PubMedCrossRefGoogle Scholar
  59. 59.
    Ong DS, Lee JS, Soeda T, et al. Coronary calcification and plaque vulnerability: an optical coherence tomographic study. Circ Cardiovasc Imaging. 2016;9(1):e003929.PubMedCrossRefGoogle Scholar
  60. 60.
    Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47(8 Suppl):C13–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852–66.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Francesco Fracassi
    • 1
  • Giampaolo Niccoli
    • 1
  1. 1.Institute of Cardiology, Catholic University of the Sacred Heart, Fondazione Policlinico Gemelli I.R.C.C.S.RomeItaly

Personalised recommendations