Advertisement

OCT for Bioabsorbable Vascular Scaffold

  • Alessio Mattesini
  • Antonio Martellini
  • Luigi Tassetti
  • Carlo Di MarioEmail author
Chapter

Abstract

Bioresorbable scaffolds (BRSs) were introduced to overcome the limitations of metallic stents associated with permanent caging of the arterial wall. The expected advantages were restoration of vessel physiology, and elimination of a permanent foreign body carrying long-term risks of device-related adverse events, including restenosis and stent thrombosis. However, after initial enthusiasm, real-world registries reported disturbingly high rates of scaffold thrombosis. In order to overcome the limitations in scaffold design (very thick struts) and suboptimal mechanical properties (lower radial force), aggravated by the very long degradation rate, the use of intracoronary imaging techniques has been strongly recommended. Because of its higher resolution, optical coherence tomography (OCT) provides detailed and precise morphologic information of BRS than intravascular ultrasound (IVUS) and has been largely applied for the assessment of acute post-procedural and long-term outcome. OCT played a central role in the detection of structural abnormalities leading to scaffold thrombosis, and optimization of BRS implantation under OCT guidance has been strongly advocated to mitigate scaffold failures. Moreover, OCT provided crucial information about the long-term vascular healing response after implantation and identified factors potentially influencing the resorption process. This chapter examines the clinical application of OCT for the assessment of BRS.

Keywords

Bioresorbable scaffolds Optical coherence tomography Scaffold thrombosis Restenosis Procedural guidance Resorption process 

Abbreviations

BRS

Bioresorbable scaffold

BVS

Bioresorbable vascular scaffold

DES

Drug-eluting stent

ISA

Incomplete strut apposition

ISR

In-stent restenosis

IVUS

Intravascular ultrasound

OCT

Optical coherence tomography

PCI

Percutaneous coronary intervention

PLLA

Poly L-lactic acid

RCTs

Randomized controlled trials

ScT

Scaffold thrombosis

TLF

Target lesion failure

TLR

Target lesion revascularization

TVR

Target vessel revascularization

VLScT

Very late scaffold thrombosis

References

  1. 1.
    Garg S, Serruys PW. Coronary stents: looking forward. J Am Coll Cardiol. 2010;56:S43–78.CrossRefGoogle Scholar
  2. 2.
    Otsuka F, Finn AV, Yazdani SK, et al. The importance of endothelium in atherothrombosis and coronary stenting. Nat Rev Cardiol. 2012;9:439–53.CrossRefGoogle Scholar
  3. 3.
    Stone GW, Gao R, Kimura T, et al. 1-year outcome with the Absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled, meta-analysis. Lancet. 2016;387:1277–89.CrossRefGoogle Scholar
  4. 4.
    Foin N, Lee RD, Torii R, Guitierrez-Chico JL, Mattesini A, Nijjer S, et al. Impact of stent strut design in metallic stents and biodegradable scaffolds. Int J Cardiol. 2014;177(3):800–8.CrossRefGoogle Scholar
  5. 5.
    Campos CM, Muramatsu T, Igbal J, et al. Bioresorbable drug-eluting magnesium-alloy scaffold for treatment of coronary artery disease. Int J Mol Sci. 2013;14:2442–24500.CrossRefGoogle Scholar
  6. 6.
    Wittchwow E, Adden N, Riedmuller J, et al. Bioresorbable drug-eluting magnesium-alloy scaffold: design and feasibility in a porcine coronary model. EuroIntervention. 2013;8:1441–50.CrossRefGoogle Scholar
  7. 7.
    Haude M, Ince H, Abizaid A, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial. Lancet. 2016;387:31–9.CrossRefGoogle Scholar
  8. 8.
    Neuman FJ, Sousa Uva M, Ahlsson A, et al. 2018 ESC guidelines on myocardial revascularization. Kardiol Pol. 2018;76:1585.CrossRefGoogle Scholar
  9. 9.
    Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet. 2016;388:2479–91.CrossRefGoogle Scholar
  10. 10.
    Onuma Y, Serruys PW, Muramatsu T, et al. Incidence and imaging outcomes of acute scaffold disruption and late structural discontinuity after implantation of the absorb Everolimus-Eluting fully bioresorbable vascular scaffold: optical coherence tomography assessment in the ABSORB cohort B Trial (A Clinical Evaluation of the Bioabsorbable Everolimus Eluting Coronary Stent System in the Treatment of Patients With De Novo Native Coronary Artery Lesions). JACC Cardiovasc Interv. 2014;7:1400–11.CrossRefGoogle Scholar
  11. 11.
    Gomez-Lara J, Diletti R, Brugaletta S, et al. Angiographic maximal luminal diameter and appropriate deployment of the everolimus-eluting bioresorbable vascular scaffold as assessed by optical coherence tomography: an ABSORB cohort B trial sub-study. EuroIntervention. 2012;8:214–24.CrossRefGoogle Scholar
  12. 12.
    Mattesini A, Secco GG, Dall’Ara G, et al. ABSORB biodegradable stents versus second-generation metal stents: a comparison study of 100 complex lesions treated under OCT guidance. JACC Cardiovasc Interv. 2014;7:741–50.CrossRefGoogle Scholar
  13. 13.
    Caiazzo G, Longo G, Giavarini A, et al. Optical coherence tomography guidance for percutaneous coronary intervention with bioresorbable scaffolds. Int J Cardiol. 2016;221:352–8.CrossRefGoogle Scholar
  14. 14.
    Serruys PW, Luijten HE, Beatt KJ, Geuskens R, de Feyter PJ, van den Brand M, Reiber JH, ten Katen HJ, van Es GA, Hugenholtz PG. Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation. 1988;77(2):361–71.CrossRefGoogle Scholar
  15. 15.
    Karanasos A, Simsek C, Gnanadesigan M, et al. OCT assessment of the long-term vascular healing response 5 years after everolimus-eluting bioresorbable vascular scaffold. J Am Coll Cardiol. 2014;64:2343–5.CrossRefGoogle Scholar
  16. 16.
    Ormiston JA, Serruys PW, Regar E, et al. A bioabsorbable everolimus-eluting coronary stent system for patients 50. with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet. 2008;371:899–907.CrossRefGoogle Scholar
  17. 17.
    Wykrzykowska JJ, Kraak RP, Hofma SH, van der Schaaf RJ, Arkenbout EK, IJsselmuiden AJ, Elias J, van Dongen IM, Tijssen RYG, Koch KT, Baan J Jr, Vis MM, de Winter RJ, Piek JJ, Tijssen JGP, Henriques JPS, AIDA Investigators. Bioresorbable scaffolds versus metallic stents in routine PCI. N Engl J Med. 2017;376:2319–28.CrossRefGoogle Scholar
  18. 18.
    Serruys PW, Chevalier B, Dude D, et al. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet. 2015;385:43–54.CrossRefGoogle Scholar
  19. 19.
    Karanasos A, Van Mieghem N, van Ditzhuijzen N, Felix C, Daemen J, Autar A, Onuma Y, Kurata M, Diletti R, Valgimigli M, Kauer F, van Beusekom H, de Jaegere P, Zijlstra F, van Geuns R-J, Regar E. Angiographic and optical coherence tomography insights into bioresorbable scaffold thrombosis: single-center experience. Circ Cardiovasc Interv. 2015;8:e002369.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Cuculi F, Puricel S, Jamshidi P, Kallinikou Z, Toggweiler S, Weissner M, Münzel T, Cook S, Gori T. Optical coherence tomography findings in bioresorbable vascular scaffolds thrombosis. Circ Cardiovasc Interv. 2015;8:e002518.CrossRefGoogle Scholar
  21. 21.
    Yamaji K, Ueki Y, Souteyrand G, Daemen J, Wiebe J, Nef H, Adriaenssens T, Loh JP, Lattuca B, Wykrzykowska JJ, Gomez- Lara J, Timmers L, Motreff P, Hoppmann P, Abdel-Wahab M, Byrne RA, Meincke F, Boeder N, Honton B, O’Sullivan CJ, Ielasi A, Delarche N, Christ G, Lee JKT, Lee M, Amabile N, Karagiannis A, Windecker S, Räber L. Mechanism of very late scaffold thrombosis. J Am Coll Cardiol. 2017;70:2330–44.CrossRefGoogle Scholar
  22. 22.
    Ali ZA, Serruys PW, Kimura T, et al. 2-year outcomes with the Absorb bioresorbable scaffold for treatment of coronary artery disease: a systematic review and meta-analysis of seven randomised trials with an individual patient data substudy. Lancet. 2017;390:760–72.CrossRefGoogle Scholar
  23. 23.
    Alfonso F, García-Guimaraes M. Restenosis of coronary bioresorbable vascular scaffolds. Rev Esp Cardiol. 2017;70:527–31.CrossRefGoogle Scholar
  24. 24.
    Indolfi C, Mongiardo A, Spaccarotella C, Caiazzo G, Torella D, De Rosa S. Neointimal proliferation is associated with clinical restenosis 2 years after fully bioresorbable vascular scaffold implantation. Circ Cardiovasc Imaging. 2014;7:755–7.CrossRefGoogle Scholar
  25. 25.
    Tanaka A, Ruparelia N, Kawamoto H, Latib A, Colombo A. Very late restenosis after bioresorbable scaffold implantation due to simultaneous external compression of the scaffold and intrascaffold tissue growth. J Am Coll Cardiol Intv. 2016;9:e15–7.CrossRefGoogle Scholar
  26. 26.
    Bastante T, Rivero F, Benedicto A, Cuesta J, Alfonso F. Recurrent neoatherosclerosis after bioresorbable vascular scaffold treatment of in-stent restenosis. J Am Coll Cardiol Intv. 2015;8:1264–5.CrossRefGoogle Scholar
  27. 27.
    Dommasch M, Langwieser N, Laugwitz KL, Ibrahim T. Malabsorption of a bioresorbable vascular scaffold system leading to very late in-scaffold restenosis more than 3.5 years after implantation: assessment by optical coherence tomography. J Am Coll Cardiol Intv. 2016;9:2571–2.CrossRefGoogle Scholar
  28. 28.
    Nakatani S, Onuma Y, Ishibashi Y, et al. Early(before 6 months), late (6–12 months) and very late (after 12 months) angiographic scaffold restenosis in the ABSORB Cohort B trial. EuroIntervention. 2015;10:1288–98.CrossRefGoogle Scholar
  29. 29.
    Longo G, Granata F, Capodanno D, et al. Anatomical features and management of bioresorbable vascular scaffolds failure: a case series from the GHOST registry. Catheter Cardiovasc Interv. 2015;85:1150–61.CrossRefGoogle Scholar
  30. 30.
    Mehilli J, Achenbach S, Woehrle J, et al. Clinical restenosis and its predictors after implantation of everolimus-eluting bioresorbable vascular scaffolds: results from the GABI-R registry. EuroIntervention. 2017;13:1319.CrossRefGoogle Scholar
  31. 31.
    Chavarría J, Suárez de Lezo J, Ojeda S, et al. Restenosis after everolimus-eluting vascular scaffolding. Angiographic and optical coherence tomography characterization. Rev Esp Cardiol. 2017;70:543–50.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alessio Mattesini
    • 1
  • Antonio Martellini
    • 1
  • Luigi Tassetti
    • 1
  • Carlo Di Mario
    • 1
    Email author
  1. 1.Structural Interventional Cardiology UnitCareggi University HospitalFlorenceItaly

Personalised recommendations