Improving the Usability of a MAS DSML

  • Tomás Miranda
  • Moharram Challenger
  • Baris Tekin Tezel
  • Omer Faruk Alaca
  • Ankica Barišić
  • Vasco Amaral
  • Miguel Goulão
  • Geylani KardasEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11375)


Context: A significant effort has been devoted to the design and implementation of various domain-specific modeling languages (DSMLs) for the software agents domain.

Problem: Language usability is often tackled in an ad-hoc way, with the collection of anecdotal evidence supporting the process. However, usability plays an important role in the productivity, learnability and, ultimately, in the adoption of a MAS DSML by agent developers.

Method: In this chapter, we discuss how the principles of The “Physics” of Notations (PoN) can be applied to improve the visual notation of a MAS DSML, called SEA_ML and evaluate the result in terms of usability.

Results: The evolved version of the language, SEA_ML++, was perceived as significantly improved in terms of icons comprehensibility, adequacy and usability, as a direct result of employing the principles of PoN. However, users were not significantly more efficient and effective with SEA_ML++, suggesting these 2 properties were not chiefly constrained by the identified shortcomings of the SEA_ML concrete syntax.


Usability Multi-agent systems Domain specific modeling language Physics of Notations SEA_ML 



The authors would like to thank the followings: (i) the Scientific and Technological Research Council of Turkey (TUBITAK) under grant 115E591, and (ii) Portuguese grants NOVA LINCS Research Laboratory (Grant: FCT/MCTES PEst UID/ CEC/04516/2013) and DSML4MA Project (Grant: FCT/MCTES TUBITAK/0008/2014).


  1. 1.
    Barišić, A., Amaral, V., Goulão, M.: Usability driven DSL development with USE-ME. Comput. Lang. Syst. Struct. (ComLan) 51, 118–157 (2017). Scholar
  2. 2.
    Basili, V., Caldiera, G., Rombach, H.: Goal question metric paradigm. Encycl. Softw. Eng. 1, 528–532 (2001)Google Scholar
  3. 3.
    Bergenti, F., Iotti, E., Monica, S., Poggi, A.: Agent-oriented model-driven development for JADE with the JADEL programming language. Comput. Lang. Syst. Struct. 50, 142–158 (2017)Google Scholar
  4. 4.
    Beydoun, G., et al.: FAML: a generic metamodel for mas development. IEEE Trans. Softw. Eng. 35(6), 841–863 (2009)CrossRefGoogle Scholar
  5. 5.
    Brooke, J.: SUS-a quick and dirty usability scale. Usability Eval. Ind. 189(194), 4–7 (1996)Google Scholar
  6. 6.
    Caire, P., Genon, N., Heymans, P., Moody, D.L.: Visual notation design 2.0: towards user comprehensible requirements engineering notations. In: RE 2013, pp. 115–124. IEEE (2013)Google Scholar
  7. 7.
    Challenger, M., Demirkol, S., Getir, S., Mernik, M., Kardas, G., Kosar, T.: On the use of a domain-specific modeling language in the development of multiagent systems. Eng. Appl. Artif. Intell. 28, 111–141 (2014)CrossRefGoogle Scholar
  8. 8.
    Challenger, M., Kardas, G., Tekinerdogan, B.: A systematic approach to evaluating domain-specific modeling language environments for multi-agent systems. Softw. Qual. J. 24(3), 755–795 (2016)CrossRefGoogle Scholar
  9. 9.
    Ciobanu, G., Juravle, C.: Flexible software architecture and language for mobile agents. Concurr. Comput. Pract. E 24(6), 559–571 (2012)CrossRefGoogle Scholar
  10. 10.
    Da Silva, V.T., Choren, R., De Lucena, C.J.: MAS-ML: a multiagent system modelling language. IJAOSE 2(4), 382–421 (2008)CrossRefGoogle Scholar
  11. 11.
    Demirkol, S., Challenger, M., Getir, S., Kosar, T., Kardas, G., Mernik, M.: Sea\(\_\)l: a domain-specific language for semantic web enabled multi-agent systems. In: 2012 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1373–1380. IEEE (2012)Google Scholar
  12. 12.
    Faccin, J., Nunes, I.: A tool-supported development method for improved BDI plan selection. Eng. Appl. Artif. Intell. 62, 195–213 (2017)CrossRefGoogle Scholar
  13. 13.
    Gabriel, P., Goulão, M., Amaral, V.: Do software languages engineers evaluate their languages? In: Proceedings of the XIII Congreso Iberoamericano en “Software Engineering” (CIbSE 2010) (2011)Google Scholar
  14. 14.
    Gascueña, J.M., Navarro, E., Fernández-Caballero, A.: Model-driven engineering techniques for the development of multi-agent systems. Eng. Appl. Artif. Intell. 25(1), 159–173 (2012)CrossRefGoogle Scholar
  15. 15.
    Genon, N., Amyot, D., Heymans, P.: Analysing the cognitive effectiveness of the UCM visual notation. In: Kraemer, F.A., Herrmann, P. (eds.) SAM 2010. LNCS, vol. 6598, pp. 221–240. Springer, Heidelberg (2011). Scholar
  16. 16.
    Genon, N., Heymans, P., Amyot, D.: Analysing the cognitive effectiveness of the BPMN 2.0 visual notation. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 377–396. Springer, Heidelberg (2011). Scholar
  17. 17.
    Gonçalves, E.J.T., et al.: MAS-ML 2.0: supporting the modelling of multi-agent systems with different agent architectures. J. Syst. Softw. 108, 77–109 (2015)CrossRefGoogle Scholar
  18. 18.
    Granada, D., Vara, J.M., Brambilla, M., Bollati, V., Marcos, E.: Analysing the cognitive effectiveness of the webML visual notation. Softw. Syst. Model. 16(1), 195–227 (2017)CrossRefGoogle Scholar
  19. 19.
    Hahn, C.: A domain specific modeling language for multiagent systems. In: Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems, vol. 1, pp. 233–240 (2008)Google Scholar
  20. 20.
    Hosein Doost, S., Adamzadeh, T., Zamani, B., Fatemi, A.: A model-driven framework for developing multi-agent systems in emergency response environments. Softw. Syst. Model. 18, 1–28 (2017)Google Scholar
  21. 21.
    ISO: Standard graphical symbols: Safety colours and safety signs-registered safety signs (ISO 7010: 2003). International Standards Organisation (ISO): Geneva, Switzerland (2003)Google Scholar
  22. 22.
    ISO: ISO standard graphical symbols: Public information symbols (ISO 7001:2007). International Standards Organisation (ISO): Geneva, Switzerland (2007)Google Scholar
  23. 23.
    Johnson, P.: Human Computer Interaction: Psychology, Task Analysis, and Software Engineering. McGraw-Hill, London (1992)Google Scholar
  24. 24.
    Kardas, G., Bircan, E., Challenger, M.: Supporting the platform extensibility for the model-driven development of agent systems by the interoperability between domain-specific modeling languages of multi-agent systems. Comput. Sci. Inf. Syst. 14(3), 875–912 (2017)CrossRefGoogle Scholar
  25. 25.
    Kardas, G., Gomez-Sanz, J.J.: Special issue on model-driven engineering of multi-agent systems in theory and practice. Comput. Lang. Syst. Struct. 50, 140–141 (2017)Google Scholar
  26. 26.
    Kardas, G., Tezel, B.T., Challenger, M.: Domain-specific modelling language for belief-desire-intention software agents. IET Softw. 12(4), 356–364 (2018)CrossRefGoogle Scholar
  27. 27.
    Matulevičius, R., Heymans, P.: Comparing goal modelling languages: an experiment. In: Sawyer, P., Paech, B., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 18–32. Springer, Heidelberg (2007). Scholar
  28. 28.
    McGuinness, D.L., van Harmelen, F.: OWL web ontology language overview. W3C (2004)Google Scholar
  29. 29.
    Miranda, T.R.: Software language engineering : interaction and usability modeling of language editors. MSc thesis, Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Monte Caparica, Portugal (2017)Google Scholar
  30. 30.
    Moody, D.: The “physics” of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)CrossRefGoogle Scholar
  31. 31.
    Moody, D.L., Heymans, P., Matulevičius, R.: Visual syntax does matter: improving the cognitive effectiveness of the i* visual notation. Requir. Eng. 15(2), 141–175 (2010)CrossRefGoogle Scholar
  32. 32.
    Nielsen, J.: How many test users in a usability study. Nielsen Norman, vol. 4, no. 06 (2012)Google Scholar
  33. 33.
    Pokahr, A., Braubach, L., Walczak, A., Lamersdorf, W.: JADEX-engineering goal-oriented agents. In: Developing multi-agent systems with JADE, pp. 254–258 (2007)Google Scholar
  34. 34.
    Saleh, F., El-Attar, M.: A scientific evaluation of the misuse case diagrams visual syntax. Inform. Softw. Tech. 66, 73–96 (2015)CrossRefGoogle Scholar
  35. 35.
    Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intell. Syst. 21(3), 96–101 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tomás Miranda
    • 1
  • Moharram Challenger
    • 2
  • Baris Tekin Tezel
    • 2
    • 3
  • Omer Faruk Alaca
    • 2
  • Ankica Barišić
    • 1
  • Vasco Amaral
    • 1
  • Miguel Goulão
    • 1
  • Geylani Kardas
    • 2
    Email author
  1. 1.NOVA LINCS, DI, FCTUniversidade NOVA de LisboaLisbonPortugal
  2. 2.International Computer InstituteEge UniversityIzmirTurkey
  3. 3.Department of Computer ScienceDokuz Eylul UniversityIzmirTurkey

Personalised recommendations