Advertisement

Decision Process in Human-Agent Interaction: Extending Jason Reasoning Cycle

  • Antonio Chella
  • Francesco Lanza
  • Valeria SeiditaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11375)

Abstract

The main characteristic of an agent is acting on behalf of humans. Then, agents are employed as modeling paradigms for complex systems and their implementation. Today we are witnessing a growing increase in systems complexity, mainly when the presence of human beings and their interactions with the system introduces a dynamic variable not easily manageable during design phases. Design and implementation of this type of systems highlight the problem of making the system able to decide in autonomy. In this work we propose an implementation, based on Jason, of a cognitive architecture whose modules allow structuring the decision-making process by the internal states of the agents, thus combining aspects of self-modeling and theory of the mind.

Keywords

Human-agent interaction BDI agent Jason 

Notes

Acknowledgment

This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-17-1-0232.

References

  1. 1.
    Anderson, J.R., Matessa, M., Lebiere, C.: ACT-R: a theory of higher level cognition and its relation to visual attention. Hum. Comput. Interact. 12(4), 439–462 (1997)CrossRefGoogle Scholar
  2. 2.
    Andersson, J., et al.: Software engineering processes for self-adaptive systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 51–75. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35813-5_3CrossRefGoogle Scholar
  3. 3.
    Baresi, L., Ghezzi, C.: The disappearing boundary between development-time and run-time. In: Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research, pp. 17–22. ACM (2010)Google Scholar
  4. 4.
    Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42(10), 22–27 (2009).  https://doi.org/10.1109/MC.2009.326CrossRefGoogle Scholar
  5. 5.
    Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented programming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013)CrossRefGoogle Scholar
  6. 6.
    Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems in AgentSpeak Using Jason, vol. 8. Wiley, Chichester (2007)CrossRefGoogle Scholar
  7. 7.
    Castelfranchi, C., Falcone, R.: Trust Theory: A Socio-Cognitive and Computational Model, vol. 18. Wiley, Chichester (2010)CrossRefGoogle Scholar
  8. 8.
    Chella, A., Lanza, F., Pipitone, A., Seidita, V.: Knowledge acquisition through introspection in human-robot cooperation. Biol. Inspired Cogn. Arch. 25, 1–7 (2018).  https://doi.org/10.1016/j.bica.2018.07.016CrossRefGoogle Scholar
  9. 9.
    Chella, A., Lanza, F., Seidita, V.: A cognitive architecture for human-robot teaming interaction. In: Proceedings of the 6th International Workshop on Artificial Intelligence and Cognition, Palermo, 2–4 July 2018 (2018)Google Scholar
  10. 10.
    Chella, A., Lanza, F., Seidita, V.: Representing and developing knowledge using Jason, CArtAgO and OWL. In: Proceedings of the 19th Workshop “From Objects to Agents”, Palermo, Italy, 28–29 June 2018, pp. 147–152 (2018)Google Scholar
  11. 11.
    Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: a research roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02161-9_1 CrossRefGoogle Scholar
  12. 12.
    Christensen, W.D., Hooker, C.A., et al.: Representation and the meaning of life. In: Clapin, H. (ed.) Representation in Mind: New Approaches to Mental Representation, pp. 41–69. Elsevier, Amsterdam (2004)CrossRefGoogle Scholar
  13. 13.
    Clark, A.: Mindware: An Introduction to the Philosophy of Cognitive Science. Oxford University Press, Oxford (2000)Google Scholar
  14. 14.
    Franklin, S., Madl, T., D’Mello, S., Snaider, J.: LIDA: a systems-level architecture for cognition, emotion, and learning. IEEE Trans. Auton. Ment. Dev. 6(1), 19–41 (2014)CrossRefGoogle Scholar
  15. 15.
    Georgeff, M., Rao, A.: Rational software agents: from theory to practice. In: Jennings, N.R., Wooldridge, M.J. (eds.) Agent Technology, pp. 139–160. Springer, Heidelberg (1998).  https://doi.org/10.1007/978-3-662-03678-5_8CrossRefGoogle Scholar
  16. 16.
    Kelso, J.S.: Dynamic Patterns: The Self-organization of Brain and Behavior. MIT Press, Cambridge (1997)Google Scholar
  17. 17.
    Kieras, D.E., Meyer, D.E.: An overview of the epic architecture for cognition and performance with application to human-computer interaction. Hum. Comput. Interact. 12(4), 391–438 (1997)CrossRefGoogle Scholar
  18. 18.
    Koller, D., Friedman, N., Bach, F.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009) Google Scholar
  19. 19.
    Laird, J.E., Lebiere, C., Rosenbloom, P.S.: A standard model of the mind: toward a common computational framework across artificial intelligence, cognitive science, neuroscience, and robotics. AI Mag. 38(4) (2017)CrossRefGoogle Scholar
  20. 20.
    Laird, J.E., Newell, A., Rosenbloom, P.S.: SOAR: an architecture for general intelligence. Artif. Intell. 33(1), 1–64 (1987)CrossRefGoogle Scholar
  21. 21.
    Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer, Heidelberg (1996).  https://doi.org/10.1007/BFb0031845CrossRefGoogle Scholar
  22. 22.
    Rao, A.S., Georgeff, M.P., et al.: BDI agents: from theory to practice. In: ICMAS 1995, pp. 312–319 (1995)Google Scholar
  23. 23.
    Seidita, V., Cossentino, M.: From modeling to implementing the perception loop in self-conscious systems. Int. J. Mach. Conscious. 2(02), 289–306 (2010)CrossRefGoogle Scholar
  24. 24.
    Shanahan, M., Baars, B.: Applying global workspace theory to the frame problem. Cognition 98(2), 157–176 (2005)CrossRefGoogle Scholar
  25. 25.
    Stillings, N.A., Chase, C.H., Feinstein, M.H.: Cognitive Science: An Introduction. MIT Press, Cambridge (1995)Google Scholar
  26. 26.
    Sun, R.: The importance of cognitive architectures: an analysis based on clarion. J. Exp. Theor. Artif. Intell. 19(2), 159–193 (2007)CrossRefGoogle Scholar
  27. 27.
    Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10(2), 115–152 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Antonio Chella
    • 1
  • Francesco Lanza
    • 1
  • Valeria Seidita
    • 1
    Email author
  1. 1.Dipartimento di IngegneriaUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations