Advertisement

Analyzing Radicalism Spread Using Agent-Based Social Simulation

  • Tasio Méndez
  • J. Fernando Sánchez-Rada
  • Carlos A. IglesiasEmail author
  • Paul Cummings
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11375)

Abstract

This work presents an agent-based model of radicalization growth based on social theories. The model aims at improving the understanding of the influence of social links on radicalism spread. The model consists of two main entities, a Network Model and an Agent Model. The Network Model updates the agent relationships based on proximity and homophily; it simulates information diffusion and updates the agents’ beliefs. The model has been evaluated and implemented in Python with the agent-based social simulator Soil. In addition, it has been evaluated through sensitivity analysis.

Keywords

Radicalization Terrorism Agent-based social simulation 

Notes

Acknowledgments

This work is supported by the Spanish Ministry of Economy and Competitiveness under the R&D projects SEMOLA (TEC2015-68284-R), by the Regional Government of Madrid through the project MOSI-AGIL-CM (grant P2013/ICE-3019, co-funded by EU Structural Funds FSE and FEDER); by the European Union through the project Trivalent (Grant Agreement no: 740934) and by the Ministry of Education, Culture and Sport through the mobility research stay grant PRX17/00417.

References

  1. 1.
    Bastian, M., Heymann, S., Jacomy, M., et al.: Gephi: an open source software for exploring and manipulating networks. ICWSM 8, 361–362 (2009)Google Scholar
  2. 2.
    Blanco-Moreno, D., Fuentes-Fernández, R., Pavón, J.: Simulation of online social networks with Krowdix. In: 2011 International Conference on Computational Aspects of Social Networks (CASoN), pp. 13–18. IEEE (2011)Google Scholar
  3. 3.
    Borgatti, S.P.: Centrality and network flow. Soc. Netw. 27(1), 55–71 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Crenshaw, M.: The psychology of terrorism: an agenda for the 21st century. Polit. Psychol. 21(2), 405–420 (2000)CrossRefGoogle Scholar
  5. 5.
    Csardi, G., Nepusz, T.: The iGraph software package for complex network research. InterJ. Complex Syst. 1695(5), 1–9 (2006)Google Scholar
  6. 6.
    Cummings, P.: Modeling the characteristics of radical ideological growth using an agent based model methodology. Master thesis, George Mason University (2017)Google Scholar
  7. 7.
    Cummings, P., Weerasinghe, C.: Modeling the characteristics of radical ideological growth using an agent based model methodology. In: MODSIM World (2017)Google Scholar
  8. 8.
    Dzhekova, R., Stoynova, N., Kojouharov, A., Mancheva, M., Anagnostou, D., Tsenkov, E.: Understanding radicalisation. Review of literature. Center for the Study of Democracy, Sofia (2016)Google Scholar
  9. 9.
    Forest, J.J.: Terrorist training centers around the world: a brief review. In: The Making of a Terrorist: Recruitment, Training and Root Causes, vol. 2. Praeger (2005) Google Scholar
  10. 10.
    Genkin, M., Gutfraind, A.: How do terrorist cells self-assemble: insights from an agent-based model of radicalization. Technical report, SSRN, July 2011Google Scholar
  11. 11.
    GEXF Working Group and others: GEXF file format (2015)Google Scholar
  12. 12.
    Gilbert, D.: The jFreeChart class library. Developer Guide. Object Refinery, vol. 7 (2002)Google Scholar
  13. 13.
    Gruebner, O., Sykora, M., Lowe, S.R., Shankardass, K., Trinquart, L., Jackson, T., Subramanian, S., Galea, S.: Mental health surveillance after the terrorist attacks in Paris. Lancet 387(10034), 2195–2196 (2016)CrossRefGoogle Scholar
  14. 14.
    Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and function using NetworkX. Technical report, Los Alamos National Laboratory (LANL), Los Alamos, NM, USA (2008)Google Scholar
  15. 15.
    Herman, J., Usher, W.: SALib: an open-source Python library for sensitivity analysis. J. Open Source Softw. 2(9) (2017).  https://doi.org/10.21105/joss.00097 CrossRefGoogle Scholar
  16. 16.
    Iooss, B., Lemaître, P.: A review on global sensitivity analysis methods. In: Dellino, G., Meloni, C. (eds.) Uncertainty Management in Simulation-Optimization of Complex Systems, pp. 101–122. Springer, Boston (2015).  https://doi.org/10.1007/978-1-4899-7547-8_5CrossRefGoogle Scholar
  17. 17.
    Jean-Baptiste, A.: Terrorist safe havens: towards an understanding of what they accomplish for terrorist organizations. Ph.D. thesis, University of Kansas (2010)Google Scholar
  18. 18.
    Matloff, N.: Introduction to discrete-event simulation and the simPy language. Department of Computer Science, University of California at Davis, Davis, CA (2008). Accessed 2 Aug 2009Google Scholar
  19. 19.
    McKinney, W.: Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O’Reilly Media, Inc., Sebastopol (2012)Google Scholar
  20. 20.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27(1), 415–444 (2001)CrossRefGoogle Scholar
  21. 21.
    Moon, I.C., Carley, K.M.: Modeling and simulating terrorist networks in social and geospatial dimensions. IEEE Intell. Syst. 22(5), 40–49 (2007)CrossRefGoogle Scholar
  22. 22.
    Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33(2), 161–174 (1991)CrossRefGoogle Scholar
  23. 23.
    O’Madadhain, J., Fisher, D., Smyth, P., White, S., Boey, Y.B.: Analysis and visualization of network data using JUNG. J. Stat. Softw. 10(2), 1–35 (2005)Google Scholar
  24. 24.
    Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003)CrossRefGoogle Scholar
  26. 26.
    Rashotte, L.: Social influence. In: Ritzer, G. (ed.) The Blackwell Encyclopedia of Sociology. Blackwell (2007) Google Scholar
  27. 27.
    Ryczko, K., Domurad, A., Buhagiar, N., Tamblyn, I.: Hashkat: large-scale simulations of online social networks. Soc. Netw. Anal. Min. 7(1), 4 (2017)CrossRefGoogle Scholar
  28. 28.
    Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley, Chichester (2008)zbMATHGoogle Scholar
  29. 29.
    Sánchez, J.M., Iglesias, C.A., Sánchez-Rada, J.F.: Soil: an agent-based social simulator in Python for modelling and simulation of social networks. In: Demazeau, Y., Davidsson, P., Bajo, J., Vale, Z. (eds.) PAAMS 2017. LNCS (LNAI), vol. 10349, pp. 234–245. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59930-4_19. https://link.springer.com/chapter/10.1007/978-3-319-59930-4_19Google Scholar
  30. 30.
    Sheppard, K.: Introduction to Python for econometrics, statistics and data analysis. Self-published, University of Oxford, version 2 (2012)Google Scholar
  31. 31.
    Spencer, A.: Questioning the concept of ‘new terrorism’. In: Peace, Conflict and Development, pp. 1–33 (2006)Google Scholar
  32. 32.
    Tucker, D.: What is new about the new terrorism and how dangerous is it? Terror. Polit. Violence 13(3), 1–14 (2001)CrossRefGoogle Scholar
  33. 33.
    Zhu, N.Q.: Data Visualization with D3.js Cookbook. Packt Publishing Ltd., Birmingham (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tasio Méndez
    • 1
  • J. Fernando Sánchez-Rada
    • 1
  • Carlos A. Iglesias
    • 1
    Email author
  • Paul Cummings
    • 2
  1. 1.Intelligent Systems GroupUniversidad Politécnica de MadridMadridSpain
  2. 2.Krasnow InstituteGMU Computational SocialFairfaxUSA

Personalised recommendations