Advertisement

Electronic Oscillator Fundamentals

  • Amal Banerjee
Chapter

Abstract

This chapter provides a brief overview of traditional oscillator theory, which has been examined in minute detail in available text and specialized electronic engineering books, as well as numerous conference and journal papers. The main focus is on the S parameter (small, large signal)-free electronic oscillator design and performance evaluation scheme. It starts with examination of the loop equations, open- and closed-loop gain, and Barkhausen and Nyquist criteria. Next, the concept of negative resistance and its application to oscillators is examined, followed by detailed enumeration of common emitter feedback, common-base feedback, common-emitter negative resistance, and differential oscillator design equations and steps. The chapter also examines in detail main oscillator noise problem, phase noise, starting with the key concepts, followed by the linear Leeson’s noise model, its drawbacks, and various modifications to include the nonlinearities of an oscillator. The discrete Fourier transform, the key tool to analyze oscillator output in the frequency domain (using the oscillator output’s power spectrum), is also examined in detail.

Keywords

Barkhausen condition Nyquist stability condition Loop gain Loop equation Positive feedback Quality factor Phase shift Common emitter feedback oscillator Common-base feedback oscillator Common-emitter negative resistance oscillator Common-base negative resistance oscillator Differential oscillator Small and large signal S parameter Single-stage oscillator Discrete Fourier transform Power spectrum Power spectral density Phase noise, Leeson’s linear-phase noise model Single side band Phase noise 

References

  1. 1.
    Grebennikov A (2007) Transistor oscillator design. John Wiley and Sons Inc., Somerset, NJ. ISBN:978-0-470-02535-2(HB)CrossRefGoogle Scholar
  2. 2.
    Grebennikov A et al (1999) Int J Elec Eng Educ Col 36:242–254CrossRefGoogle Scholar
  3. 3.
    Grebennikov A, Nikiforov VV (1997) An analytic method of microwave oscillator design. Int J Electron 83:845–853CrossRefGoogle Scholar
  4. 4.
    Reinhold L, Bretchko P (2000) RF circuit design - theory and applications. Prentice Hall, New Jersey. ISBN 10: 0-13-095323-7Google Scholar
  5. 5.
    Pozar DM (2011) Microwave engineering, 4th ed. ISBN 978-0-470-63155-3 Library of Congress TK7876.P69 2011 621.381’3---de23.Google Scholar
  6. 6.
    Vandelin GD, Pavio AM, Rohde UL (2005) Microwave circuit design using linear and non-linear techniques, 2nd edn. Wiley Interscience, New York. ISBN-10 0-471-41479-4; ISBN-13 978-0-471-41479-7CrossRefGoogle Scholar
  7. 7.
    Larson LE (1996) RF and microwave circuit design for wireless communications. Artech House, Norwood, Mass. ISBN-13: 978-0890068182; ISBN-10: 0890068186Google Scholar
  8. 8.
    Smith JR (1998) Modern communication circuits, 2nd edn. McGraw-Hill, New York. ISBN-10: 0070665443 ISBN-13: 978-0070665446Google Scholar
  9. 9.
    Rohde UL (1997) Microwave and wireless synthesizers: theory and design. Wiley Interscience, New YorkCrossRefGoogle Scholar
  10. 10.
    Rohde UL, Poddar AK, Boeck G The design of modern microwave oscillators for wireless applications theory and optimizations. John Wiley and Sons, New York. ISBN: 13: 978-0-471-72342-4Google Scholar
  11. 11.
    Google search with “large signal S parameter tutorial ADS” gives: https://www.utdallas.edu/~rmh072000/Site/...and.../5A_slides.pdf
  12. 12.
    Google search with “large signal S parameter AWR” gives: https://awrcorp.com/download/faq/english/docs/users.../ch03s03.html
  13. 13.
    Eungdamrong D, Misra DK (2002) Working with transistor S parameters RF design, p 38–42Google Scholar
  14. 14.
  15. 15.
  16. 16.
  17. 17.
    Baghdady EJ, Lincoln RN, Nelin BD (1965) Short-term frequency stability: characterization, theory, and measurement. Proc IEEE 53:704–722CrossRefGoogle Scholar
  18. 18.
    Cutler LS, Searle CL (1966) Some aspects of the theory and measurement of frequency fluctuations in frequency standards. https://ieeexplore.ieee.org/iel5/5/31081/01446557.pdf
  19. 19.
    Rutman J (1978) Characterization of phase and frequency instabilities in precision frequency sources; fifteen years of progress. Proc IEEE 66:1048–1174CrossRefGoogle Scholar
  20. 20.
    Kundert K. Predicting the phase noise and jitter of PLL based frequency synthesizers. www.designers-guide.org.
  21. 21.
    Razavi B (1996) A study of phase noise in CMOS oscillators. IEEE J Solid-State Circ 31:3Google Scholar
  22. 22.
    Lee TH, Hajimiri A (2000) Oscillator phase noise: a tutorial. IEEE J Solid State Circuits 35(3):326–336CrossRefGoogle Scholar
  23. 23.
    Hajimiri A, Lee T (1998) A general theory of phase noise in electrical oscillators. IEEE J Solid State Circuits 33(2):179–194CrossRefGoogle Scholar
  24. 24.
    Demir A, Mehrotra A, Roychowdhury J (May 2000) Phase noise in oscillators: a unifying theory and numerical methods for characterization. IEEE Trans Circ Syst I 47(5)CrossRefGoogle Scholar
  25. 25.
    Google search with “phasor diagram” gives: https://www.electronics-tutorials.ws/accircuits/phasors.html
  26. 26.
  27. 27.
    Leeson DB (1966) A simple model of feedback oscillator noise spectrum. Proc IEEE 54(2):329–330.  https://doi.org/10.1109/PROC.1966.4682CrossRefGoogle Scholar
  28. 28.
    Anzac A (1990) Roussell – double balanced mixers – RF and microwave signal processing components handbookGoogle Scholar
  29. 29.
    Barber MR (1967) Noise figure and conversion loss of the Schottky barrier mixer diode. IEEE Trans Microwave Theory Technol 15(11):629–635CrossRefGoogle Scholar
  30. 30.
    Henderson BC (1997–98) Mixers: Part 1. Characteristics and performance – RF and microwave design handbookGoogle Scholar
  31. 31.
    Krauss Herbert L, Bostian Charles W, Raab Frederick H (1980) Solid state radio engineering. John Wiley & Sons, New YorkGoogle Scholar
  32. 32.
    Kerr AR (1979) Noise and loss in balanced and subharmonically pumped mixers: Part I theory. IEEE Trans Microwave Theory Technol 27(12):938–943CrossRefGoogle Scholar
  33. 33.
    Kerr AR (1979) Noise and loss in balanced and subharmonically pumped mixers: Part II application. IEEE Trans Microwave Theory Technol 27(12):944–950CrossRefGoogle Scholar
  34. 34.
    Discrete Fourier Transform tutorial from: https://web.eecs.umich.edu/~fessler/course/451/l/pdf/c5.pdf

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Amal Banerjee
    • 1
  1. 1.Analog ElectronicsKolkataIndia

Personalised recommendations