Advertisement

Red Dwarfs pp 313-352 | Cite as

A New Hope

  • David S. Stevenson
Chapter

Abstract

In the last decade two new planetary systems have emerged from radial velocity data, those of Proxima Centauri and TRAPPIST-1. Proxima is a 0.12 solar mass red dwarf and the closest star to our Sun, making it a particularly attractive target for further investigation. Meanwhile, the older TRAPPIST-1 system has seven planets, several of which could be habitable—at least in the crudest sense. Although each system has its detractors and flaws, both could host sophisticated life and are easily the best systems we know of that could be habitable.

References

Proxima b

  1. Boutle, I. A., Mayne, N. J., Drummond, B., Manners, J., Goyal, J., Lambert, F. H., Acreman, D. M., & Earnshaw, P. D. (2017). Exploring the climate of Proxima B with the Met Office Unified Model. Astronomy & Astrophysics, 601, A120. https://arxiv.org/abs/1702.08463.ADSCrossRefGoogle Scholar
  2. Feng, F., & Jones, H. R. A. (2018). Was Proxima captured by alpha Centauri A and B? Monthly Notices of the Royal Astronomical Society, 473(3), 3185–3189.  https://doi.org/10.1093/mnras/stx2576.ADSCrossRefGoogle Scholar
  3. Ribas, I., Bolmont, E., Selsis, F., Reiners, A., Leconte, J., Raymond, S. N., Engle, S. G., Guinan, E. F., Morin, J., Turbet, M., Forget, F., Velasco, G., & Anglada-Escudé, G. (2016). The habitability of Proxima Centauri b I. Irradiation, rotation and volatile inventory from formation to the present. Astronomy & Astrophysics, 596, A111. https://arxiv.org/pdf/1608.06813.pdf.ADSCrossRefGoogle Scholar
  4. Stevenson, D. S. (2019). Phytoclimatic mapping of exoplanets. International Journal of Astrobiology, 1–10.  https://doi.org/10.1017/S1473550419000181.
  5. Turbet, M., Leconte, J., Selsis, F., Bolmont, E., Forget, F., Ribas, I., Raymond, S. N., & Anglada-Escudé, G. (2016). The habitability of Proxima Centauri b. II. Possible climates and observability. Astronomy & Astrophysics, 596, A112.  https://doi.org/10.1051/0004-6361/201629577. https://www.aanda.org/articles/aa/pdf/2016/12/aa29577-16.pdf.ADSCrossRefGoogle Scholar

TRAPPIST-1

  1. Barnes, J. R., Jenkins, J. S., Jones, H. R. A., et al. (2014). Precision radial velocities of 15 M5-M9 dwarfs. Monthly Notices of the Royal Astronomical Society, 439(3), 3094–3113.  https://doi.org/10.1093/mnras/stu172. https://arxiv.org/abs/1401.5350.ADSCrossRefGoogle Scholar
  2. Bourrier, V., de Wit, J., Bolmont, E., Stamenkovi, V., Wheatley, P. J., Burgasser, A. J., Delrez, L., Demory, B.-O., Ehrenreich, D., Gillon, M., Jehin, E., Leconte, J., Lederer, S. M., Lewis, N., Triaud, A. H. M. J., & Van Grootel, V. (2017). Temporal evolution of the high-energy irradiation and water content of TRAPPIST-1 exoplanets. The Astronomical Journal, 154, 121. https://arxiv.org/pdf/1708.09484.pdf.ADSCrossRefGoogle Scholar
  3. Burgasser, A. J., & Mamajek, E. E. (2017). On the Age of the TRAPPIST-1 System. The Astrophysical Journal, 845(2), 110. https://arxiv.org/abs/1706.02018.ADSCrossRefGoogle Scholar
  4. de Wit, J., Wakeford, H. R., Lewis, N. K., Delrez, L., Gillon, M., Selsis, F., Leconte, J., Demory, B.-O., Bolmont, E., Bourrier, V., Burgasser, A. J., Grimm, S., Jehin, E., Lederer, S. M., Owen, J. E., Stamenković, V., & Triaud, A. H. M. J. (2018). Atmospheric reconnaissance of habitable-zone earthsized exoplanets. Nature Astronomy, 2, 214–219. https://arxiv.org/abs/1802.02250.ADSCrossRefGoogle Scholar
  5. Delrez, L., Gillon, M., Amaury, H. M. J., et al. (2018). Early 2017 observations of TRAPPIST-1 with Spitzer. Monthly Notices of the Royal Astronomical Society, 475(3), 3577–3597.  https://doi.org/10.1093/mnras/sty051. https://arxiv.org/abs/1801.02554.ADSCrossRefGoogle Scholar
  6. Gillon, M., Triaud, A. H. M. J., Demory, B.-O., Jehin, E., Agol, E., Deck, K. M., Lederer, S. M., de Wit, J., Burdanov, A., Ingalls, J. G., Bolmont, E., Leconte, J., Raymond, S. N., Selsis, F., Turbet, M., Barkaoui, K., Burgasser, A., Burleigh, M. R., Carey, S. J., Chaushev, A., Copperwheat, C. M., Delrez, L., Fernandes, C. S., Holdsworth, D. L., Kotze, E. J., Van Grootel, V., Almleaky, Y., Benkhaldoun, Z., Magain, P., & Queloz, D. (2017). Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature, 542, 456–460.  https://doi.org/10.1038/nature21360.ADSCrossRefGoogle Scholar
  7. Grimm, S. L., Demory, B.-O., Gillon, M., Dorn, C., Agol, E., Burdanov, A., Delrez, L., Sestovic, M., Triaud, A. H. M. J., Turbet, M., Bolmont, É., Caldas, A., de Wit, J., Jehin, E., Leconte, J., Raymond, S. N., Van Grootel, V., Burgasser, A. J., Carey, S., Fabrycky, D., Heng, K., Hernandez, D. M., Ingalls, J. G., Lederer, S., Selsis, F., & Queloz, D. (2018). The nature of the TRAPPIST-1 exoplanets. Astronomy & Astrophysics, 613, A68. https://www.eso.org/public/archives/releases/sciencepapers/eso1805/eso1805a.pdf.CrossRefGoogle Scholar
  8. Kislyakova, K. G., Noack, L., Johnstone, C. P., Zaitsev, V. V., Fossati, L., Lammer, H., Khodachenko, M. L., Odert, P., & Güdel, M. (2017). Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating. Nature Astronomy, 1, 878–885.ADSCrossRefGoogle Scholar
  9. Krisztián, V., Kővári, Z., Pál, A., et al. (2017). Frequent flaring in the TRAPPIST-1 system—Unsuited for life. The Astrophysical Journal, 841(2), 124.  https://doi.org/10.3847/1538-4357/aa6f05. https://arxiv.org/abs/1703.10130.ADSCrossRefGoogle Scholar
  10. Shields, A. L., Barnes, R., Agol, E., Charnay, B., Bitz, C., & Meadows, V. S. (2016). The effect of orbital configuration on the possible climates and habitability of Kepler-62f. Astrobiology, 16. https://arxiv.org/pdf/1603.01272.pdf.
  11. Tamayo, D., Rein, H., Petrovich, C., & Murray, N. (2017). Convergent migration renders TRAPPIST-1 long-lived. The Astrophysical Journal Letters, 840(2), L19.  https://doi.org/10.3847/2041-8213/aa70ea..Available. https://arxiv.org/abs/1704.02957.ADSCrossRefGoogle Scholar
  12. Van Grootel, V., Fernandes, C. S., Gillon, M., Jehin, E., Manfroid, J., Scuflaire, R., Burgasser, A. J., Burdanov, A., Delrez, L., Demory, B.-O., de Wit, J., Queloz, D., & Triaud, A. H. M. J. (2018). Stellar parameters for TRAPPIST-1. The Astrophysical Journal, 853(1), 30. arXiv:1712.01911.ADSCrossRefGoogle Scholar
  13. Wheatley, P. J., Louden, T., Bourrier, V., Ehrenreich, D., & Gillon, M. (2017). Strong XUV irradiation of the Earth-sized exoplanets orbiting the ultracool dwarf TRAPPIST-1. Monthly Notices of the Royal Astronomical Society: Letters, 465(1), L74–L78. Preprint available: https://arxiv.org/pdf/1605.01564v1.pdf.ADSCrossRefGoogle Scholar
  14. Wolf, E. (2017). Assessing the habitability of the TRAPPIST-1 system using a 3D climate model. The Astrophysical Journal Letters, 839, 6. http://iopscience.iop.org/article/10.3847/2041-8213/aa693a/pdf.ADSCrossRefGoogle Scholar

K-Dwarfs

  1. Borucki, W. J., Agol, E., Fressin, F., Kaltenegger, L., Rowe, J., Isaacson, H., Fischer, D., Batalha, N., Lissauer, J. J., Marcy, G. W., Fabrycky, D., Désert, J.-M., Bryson, S. T., Barclay, T., Bastien, F., Boss, A., Brugamyer, E., Buchhave, L. A., Burke, C., Caldwell, D. A., Carter, J., Charbonneau, D., Crepp, J. R., Christensen-Dalsgaard, J., Christiansen, J. L., Ciardi, D., Cochran, W. D., DeVore, E., Doyle, L., Dupree, A. K., Endl, M., Everett, M. E., Ford, E. B., Fortney, J., Gautier, T. N., III, Geary, J. C., Gould, A., Haas, M., Henze, C., Howard, A. W., Howell, S. B., Huber, D., Jenkins, J. M., Kjeldsen, H., et al. (2013). Kepler-62: A five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone. Science, 340, 587–590. https://arxiv.org/ftp/arxiv/papers/1304/1304.7387.pdf.ADSCrossRefGoogle Scholar
  2. Torres, G., Kipping, D. M., Fressin, F., Caldwell, D. A., Twicken, J. D., Ballard, S., Batalha, N. M., Bryson, S. T., Ciardi, D. R., Henze, C. E., Howell, S. B., Isaacson, H. T., Jenkins, J. M., Muirhead, P. S., Newton, E. R., Petigura, E. A., Barclay, T., Borucki, W. J., Crepp, J. R., Everett, M. E., Horch, E. P., Howard, A. W., Kolbl, R., Marcy, G. W., McCauliff, S., & Quintana, E. V. (2015). Validation of twelve small Kepler transiting planets in the habitable zone. The Astrophysical Journal, 800, 99. https://arxiv.org/pdf/1501.01101.pdf.ADSCrossRefGoogle Scholar

Models and Problems

  1. Armstrong, J. C., Barnes, R., Domagal-Goldman, S., Breiner, J., Quinn, T. R., & Meadows, V. S. (2014). Effects of extreme obliquity variations on the habitability of exoplanets. Astrobiology, 14(4), 277–291.  https://doi.org/10.1089/ast.2013.1129. https://arxiv.org/pdf/1404.3686.pdf.ADSCrossRefGoogle Scholar
  2. Boutle, I. A., Mayne, N. J., Drummond, B., Manners, J., Goyal, J., Lambert, F. H., Acreman, D. M., & Earnshaw, P. D. (2017). Exploring the climate of Proxima B with the Met Office Unified Model. https://arxiv.org/pdf/1702.08463.pdf.
  3. Gale, J., & Wandel, A. (2015). The potential of planets orbiting red dwarf stars to support oxygenic photosynthesis and complex life. International Journal of Astrobiology, 16, 1–9. https://arxiv.org/abs/1510.03484.ADSCrossRefGoogle Scholar
  4. Haqq-Misra, J., Kopparapu, R. K., & Wolf, E. T. (2018). Why do we find ourselves around a yellow star instead of a red star? International Journal of Astrobiology, 17(1), 77–86.  https://doi.org/10.1017/S1473550417000118.ADSCrossRefGoogle Scholar
  5. Kiang, N. Y., Segura, A., Tinetti, G., Govindjee, R. E. B., Cohen, M., Siefert, J., Crisp, D., & Meadows, V. S. (2007). Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology, 7(1), 252–274.ADSCrossRefGoogle Scholar
  6. Kiang, N. Y., Siefert, J., Govindjee, & Blankenship, R. E. (2007). Spectral signatures of photosynthesis. I. Review of Earth organisms. Astrobiology, 7(1), 222–251.ADSCrossRefGoogle Scholar
  7. Kislyakova, K. G., Noackz, L., Johnstoney, C. P., Zaitsevx, V. V., Fossati, L., Lammer, H., Khodachenko, M. L., Odert, P., & Güdely, M. (2017). Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating. Nature Astronomy, 1, 878–885. https://arxiv.org/pdf/1710.08761.pdf.ADSCrossRefGoogle Scholar
  8. Parke Loyd, R. O., Shkolnik, E. L., Schneider, A. C., Barman, T. S., Meadows, V. S., Pagano, I., & Peacock, S. (2018). HAZMAT. IV. Flares and superflares on young M stars in the far ultraviolet. The Astrophysical Journal, 867, 70. (13pp). http://imgsrc.hubblesite.org/hvi/uploads/science_paper/file_attachment/359/Lloyd_published_ApJ_paper_100118.pdf.ADSCrossRefGoogle Scholar
  9. Shields, A. L., Ballard, S., & Johnson, J. A. (2016). The habitability of planets orbiting M-dwarf stars. Physics Reports, 663, 1–38. https://arxiv.org/abs/1610.05765.ADSMathSciNetCrossRefGoogle Scholar
  10. Stern, R. J. (2016). Is plate tectonics needed to evolve technological species on exoplanets? Geoscience Frontiers, 7, 573–580.  https://doi.org/10.1016/j.gsf.2015.12.002.CrossRefGoogle Scholar
  11. Stevenson, D. S. (2018). Evolutionary Exobiology II: Investigating biological potential of synchronously-rotating worlds. International Journal of Astrobiology, 1–15.  https://doi.org/10.1017/S1473550418000241.ADSCrossRefGoogle Scholar
  12. Stevenson, D. S. (2018). Niche amplitude, tidal-locking and Fermi’s Paradox. International Journal of Astrobiology, 1–7.  https://doi.org/10.1017/S1473550418000253.ADSCrossRefGoogle Scholar
  13. Stevenson, D. S. (2019). Biogeographical Modeling of Alien Worlds. Manuscript in preparation.Google Scholar
  14. Stevenson, D. S. (2019). Planetary mass, vegetation height and climate. International Journal of Astrobiology, 1–6.  https://doi.org/10.1017/S1473550418000484.ADSCrossRefGoogle Scholar
  15. Stevenson, D. S., & Large, S. (2017). Evolutionary exobiology: towards the qualitative assessment of biological potential on exoplanets. International Journal of Astrobiology, 16(4), 1–5.  https://doi.org/10.1017/S1473550417000349.CrossRefGoogle Scholar
  16. Tarter, J. C., Backus, P. R., Mancinelli, R. L., Aurnou, J. M., Backman, D. E., Basri, G. S., Boss, A. P., Clarke, A., Deming, D., Doyle, L. R., Feigelson, E. D., Freund, F., Grinspoon, D. H., Haberle, R. M., Hauck, S. A., II, Heath, M. J., Henry, T. J., Hollingsworth, J. L., Joshi, M. M., Kilston, S., Liu, M. C., Meikle, E., Neil Reid, I., Rothschild, L. J., Scalo, J., Segura, A., Tang, C. M., Tiedje, J. M., Turnbull, M. C., Walkowicz, L. M., Weber, A. L., & Young, R. E. (2007). A Reappraisal of the Habitability of Planets Around M Dwarf Stars. Astrobiology, 7(1), 30–65.ADSCrossRefGoogle Scholar
  17. Walz, U. (2011). Landscape structure, landscape metrics and biodiversity. Living Reviews in Landscape Research, 5(3). http://www.livingreviews.org/lrlr-2011-3.
  18. Zeng, L., Sasselov, D. D., & Jacobsen, S. B. (2016). Mass–radius relation for rocky planets based on PREM. The Astrophysical Journal, 819(127), 5.  https://doi.org/10.3847/0004-637X/819/2/127.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David S. Stevenson
    • 1
  1. 1.SherwoodUK

Personalised recommendations