Red Dwarfs pp 255-284 | Cite as

The Niche, Its Hypervolume and the Entropy of Existence

  • David S. Stevenson


Although life may be ubiquitous, the ultimate question is whether intelligent (or even complex multicellular) life is equally abundant. Moreover, given a few certainties, such as an energy and nutrient source, will life inevitably follow a path to complexity? Although Chaps. 8 and 9 deal with some specifics, this chapter will focus on developing some underlying ideas and principles that are likely to be applicable to all biological systems, no matter their origin or overall design. By the close of this chapter, you should be able to consider any number of planets in terms of their habitability for life in general—and in terms of whether complex and intelligent biology becomes likely. As a consequence, we can then address the so-called Fermi Paradox—why has ET not (officially) phoned us up?


  1. Barthlott, W., Mutke, J., Rafiqpoor, M. D., Kier, G., & Kreft, H. (2005). Global centres of vascular plant diversity. Nova Acta Leopoldina, 92, 61–83.Google Scholar
  2. Blair Hedges, S., Blair, J. E., Venturi, M. L., & Shoe, J. L. (2004). A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evolutionary Biology, 4, 1–9. Scholar
  3. Blonder, B. (2017). Hypervolume concepts in niche- and trait-based ecology. Ecography, 40, 001–013. Scholar
  4. Brin, G. D. (1983). The ‘great silence’: The controversy concerning extraterrestrial intelligent life. Quarterly Journal of the Royal Astronomical Society, 24, 283–309.ADSGoogle Scholar
  5. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., & Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature, 464, 1025–1028.ADSCrossRefGoogle Scholar
  6. Calcott, B., & Sterelny, K. (2011). The major transitions in evolution revisited. Cambridge: Massachusetts Institute of Technology. ISBN: 978-0-262-01524-0.CrossRefGoogle Scholar
  7. Cardenas, R. (2014). Quantitative theory of habitability: From ecology to astrobiology.
  8. Cardenas, R. (2017). On the quantification of habitability. In Conference paper: II International Conference on Biogeosciences.Google Scholar
  9. Cardenas, R., Perez, N., Martinez-Frias, J., & Martin, O. (2015). On the habitability of aquaplanets. Challenges, 5, 284–293. Scholar
  10. Carter, B. (1993). The anthropic selection principle and the ultra-darwinian synthesis. In F. Bertola & U. Curi (Eds.), The anthropic principle (pp. 33–63). Cambridge: Cambridge University Press.Google Scholar
  11. Cirkovic, M. M. (2018). Woodpeckers and diamonds: Some aspects of evolutionary convergence in astrobiology. Astrobiology, 18(5), 491–502. Scholar
  12. Danovaro, R., Dell’Anno, A., Pusceddu, A., Gambi, C., Heiner, I., & Kristensen, R. M. (2010). The first metazoa living in permanently anoxic conditions. BMC Biology, 8, 30–40. Scholar
  13. Davison, J., Moora, M., Öpik, M., Ainsaar, L., Ducousso, M., Hiiesalu, I., Jairus, T., Johnson, N., Jourand, P., Kalamees, R., Koorem, K., Meyer, J.-Y., Püssa, K., Reier, Ü., Pärtel, M., Semchenko, M., Traveset, A., Vasar, M., & Zobel, M. (2018). Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities. The ISME Journal, 12, 2211–2224. Scholar
  14. de, L. C., Madec, G., Roquet, F., Holmes, R. M., & McDougall, T. J. (2017). Abyssal ocean overturning shaped by seafloor distribution. Nature, 551, 181–186. Scholar
  15. Gaston, K. J. (2000). Global patterns in biodiversity. Nature, 405, 220–227.CrossRefGoogle Scholar
  16. Gatti, R. C. (2016). The fractal nature of the latitudinal biodiversity gradient. Biologia, 71/6, 669–672. Scholar
  17. Gillman, L. N., Wright, S. D., Cusens, J., McBride, P. D., Malhi, Y., & Whittaker, R. J. (2015). Latitude, productivity and species richness. Global Ecology and Biogeography, 24, 107–117. Scholar
  18. Hanson, R. (1998) Must early life be easy? The rhythm of major evolutionary transitions.
  19. Holdridge, L. R. (1947). Determination of world plant formations from simple climatic data. Science, 105, 367–368.ADSCrossRefGoogle Scholar
  20. Holdridge, L. R. (1967). Life Zone Ecology. Revised Edition (p. 206). San José: Tropical Science Center.Google Scholar
  21. Ifo, S. A., Moutsambote, J.-M., Koubouana, F., Yoka, J., Ndzai, S. F., Nucia, L., Bouetou-Kadilamio, O., Mampouya, H., Jourdain, C., Bocko, M. Y. A. B., Mouanga-Sokath, M. M. D., Odende, R., Mondzali, L. R., Emmanue, Y., Wenina, M., Jenkins, C. N., Pimmb, S. L., & Joppac, L. N. (2013). Global patterns of terrestrial vertebrate diversity and conservation. PNAS, 110(28), E2602–E2610. Scholar
  22. Jenkins, C. N., Pimm, S. L., & Joppa, L. N. (2013). Global patterns of terrestrial vertebrate diversity and conservation. PNAS, 2602–2610. Scholar
  23. Kay, R. F., Madden, R. H., Van Schaik, C., & Higdon, D. (1997). Primate species richness is determined by plant productivity: implications for conservation. Proceedings of the National Academy of Sciences of the United States of America, 94(24), 13,023–13,027. Scholar
  24. Kiera, G., Krefta, H., Leeb, T. M., Jetzb, W., Ibischc, P. L., Nowickic, C., Mutkea, J., & Barthlotta, W. (2009). A global assessment of endemism and species richness across island and mainland regions. PNAS, 106(23), 9322–9327. Scholar
  25. Koonin, E. V. (2010). The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biology, 11, 209. Scholar
  26. Lebauer, D. S., & Treseder, K. K. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89(2), 371–379.CrossRefGoogle Scholar
  27. Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A., & Butterfield, N. J. (2014). Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience, 7(4), 257–265. ISSN: 1752-0894.ADSCrossRefGoogle Scholar
  28. Lingam, M. & Loeb, A. (2018). Dependence of biological activity on the surface water fraction of planets.
  29. Lingam, M. & Loeb, A. (2018). Is extraterrestrial life suppressed on subsurface ocean worlds due to the paucity of bioessential elements?
  30. Loeb, A., Batista, R. A., & Sloan, D. (2016). Relative likelihood for life as a function of cosmic time. Journal of Cosmology and Astroparticle Physics, 2016, 040. Scholar
  31. Maccone, C. (2010). The statistical Drake equation. Acta Astronomica, 67, 1366–1383. Scholar
  32. Maccone, C. (2014). Evolution and mass extinctions as lognormal stochastic processes. International Journal of Astrobiology, 13(4), 290–309. Scholar
  33. Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., & Worm, B. (2011). How many species are there on earth and in the ocean? PLoS Biology, 9(8), e1001127. Scholar
  34. Ouissika, B. C., & Joel, L. J. (2015). Tree species diversity, richness, and similarity in intact and degraded forest in the tropical rainforest of the Congo basin: Case of the forest of Likouala in the Republic of Congo. International Journal of Forestry Research, 2016, 7593681. Scholar
  35. Partin, C. A., Bekker, A., Planavsky, N. J., Scott, C. T., Gill, B. C., Li, C., Podkovyrov, V., Maslov, A., Konhauser, K. O., Lalonde, S. V., Love, G. D., Poulton, S. W., & Lyons, T. W. (2013). Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth and Planetary Science Letters, 369–370, 284–293.ADSCrossRefGoogle Scholar
  36. Penn, J., & Vallis, G. K. (2012). The thermal phase curve offset on tidally- and non-tidally-locked exoplanets: A shallow water model. The Astrophysical Journal, 842(2).
  37. Pinheiro, H. T., Bernardi, G., Simon, T., Joyeux, J.-C., Macieira, R. M., Gasparini, J. L., Rocha, C., & Rocha, L. A. (2017). Island biogeography of marine organisms. Nature, 549, 82–85. Scholar
  38. Price, T. D., Hooper, D. M., Buchanan, C. D., Johansson, U. S., Tietze, D. T., Alström, P., Olsson, U., Ghosh-Harihar, M., Ishtiaq, F., Gupta, S. K., Martens, J., Harr, B., Singh, P., & Mohan, D. (2014). Niche filling slows the diversification of Himalayan songbirds. Nature, 509, 222–225. Scholar
  39. Proença, V., Martin, L. J., Pereira, H. M., Fernandez, M., McRae, L., Belnap, J., Böhm, M., Brummitt, N., García-Moreno, J., Gregory, R. D., Honrado, J. P., Jürgens, N., Opige, M., Schmeller, D. S., Tiago, P., & van Swaay, C. A. M. (2017). Global biodiversity monitoring: From data sources to essential biodiversity variables. Biological Conservation, 213, 256–263. Scholar
  40. Rabosky, D. L., & Matute, D. R. (2013). Macroevolutionary speciation rates are decoupled from the evolution of intrinsic reproductive isolation in Drosophila and birds. PNAS, 110(38), 15,354–15,359. Scholar
  41. Rabosky, D. L., Chang, J., Title, P. O., Cowman, P. F., Sallan, L., Friedman, M., Kaschner, K., Garilao, C., Near, T. J., Coll, M., & Alfaro, M. E. (2018). An inverse latitudinal gradient in speciation rate for marine fishes. Nature, 559, 392–395. Scholar
  42. Raymond, S. N., Scalo, J., & Meadows, V. S. (2007). A decreased probability of habitable planet formation around low-mass stars. The Astrophysical Journal, 669, 606–614.ADSCrossRefGoogle Scholar
  43. Ricklefs, R. E., & Heb, F. (2016). Region effects influence local tree species diversity. PNAS, 113(3), 674–679. Scholar
  44. Rosenzweig, M. L. (1968). Net primary productivity of terrestrial communities: prediction from climatological data. The American Naturalist, 102(923), 67–74. Scholar
  45. Schirrmeistera, B. E., de Vosb, J. M., Antonellic, A., & Bagheria, H. C. (2013). Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. PNAS, 110(5), 1791–1796.ADSCrossRefGoogle Scholar
  46. Schopf, J. W. (1995). Disparate rates, differing fates: Tempo and mode of evolution changed from the precambrian to the phanerozoic. In W. M. Fitch & F. J. Ayala (Eds.), Tempo and mode in evolution, genetics and paleontology 50 years after simpson (pp. 41–61). Washington D.C.: National Academy Press.Google Scholar
  47. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(4), 623–666. Scholar
  48. Šímová, I., Violle, C., Kraft, N. J. B., Storch, D., Svenning, J. C., Boyle, B., Donoghue, J. C., II, Jørgensen, P., McGill, B. J., Morueta-Holme, N., Piel, W. H., Peet, R. K., Regetz, J., Schildhauer, M., Spencer, N., Thiers, B., Wiser, S., & Enquist, B. J. (2015). Shifts in trait means and variances in North American tree assemblages: species richness patterns are loosely related to the functional space. Ecography, 38, 649–658. Scholar
  49. Sperling, E. A., Wolock, C. J., Morgan, A. S., Gill, B. C., Kunzmann, M., Halverson, G. P., Macdonald, F. A., Knoll, A. H., & Johnston, D. T. (2015). Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature, 523, 451–454. Scholar
  50. Spiegel, D. S., & Edwin, L. T. (2011). Life might be rare despite its early emergence on Earth: A Bayesian analysis of the probability of abiogenesis. PNAS. Scholar
  51. Stevenson, D. S. (2018). Evolutionary Exobiology II: investigating biological potential of synchronously-rotating worlds. International Journal of Astrobiology, 1–15. Scholar
  52. Stevenson, D. S. (2018). Niche amplitude, tidal-locking and Fermi’s Paradox. International Journal of Astrobiology, 1–7. Scholar
  53. Stevenson, D. S. (2019). Planetary mass, vegetation height and climate. International Journal of Astrobiology, 1–6.
  54. Stevenson, D. S. (2019). Phytoclimatic mapping of exoplanets. International Journal of Astrobiology, 1–10.
  55. Stevenson, D. S., & Large, S. (2017). Evolutionary exobiology: Towards the qualitative assessment of biological potential on exoplanets. International Journal of Astrobiology, 16, 1–5. Scholar
  56. Stevenson, D. S. & Wallace, R. (2019). Biogeographical Modeling of Alien Worlds. (manuscript in preparation)Google Scholar
  57. Szathmary, E., & Maynard Smith, J. (1995). The major transitions in evolution. Nature, 374, 227–232.ADSCrossRefGoogle Scholar
  58. Wallace, R. & Stevenson, D. S. (2019). The Extraterrestrial Niche: Determining the Scope of Life on Other Worlds. (manuscript in preparation)Google Scholar
  59. Wallace, R. (2009). Metabolic constraints on the eukaryotic transition. Origins of Life and Evolution of the Biosphere, 39, 165–176. Scholar
  60. Wallace, R. (2016). The metabolic economics of environmental adaptation. Ecological Modelling, 322, 48–53. Scholar
  61. Wallace, R. (2017). The aerobic transition as an economic ratchet. International Journal of Astrobiology. Scholar
  62. Walz, U. (2011). Landscape structure, landscape metrics and biodiversity. Living Reviews in Landscape Research, 5(3).
  63. Watson, R., & Szathmary, E. (2016). How can evolution learn? Trends in Ecology & Evolution, 31(2), 147–157. Scholar
  64. William Schopf, J. (1999). The oldest fossils and what they mean. In Major events in the history of life (pp. 29–63). Princeton: Princeton University Press. ISBN: 0867202688 9780867202687.Google Scholar
  65. Xiong Jian-gang, X. J., Fan, Y., & Jun, L. (1994). The influence of topography on the nonlinear interaction of Rossby waves in the barotropic atmosphere. Applied Mathematics and Mechanics, 15(6), 585–594.MathSciNetCrossRefGoogle Scholar
  66. Yockey, H. P. (2005). Information theory, evolution, and the origin of life. Cambridge: Cambridge University Press. ISBN 0·521·80293-8.CrossRefGoogle Scholar
  67. Žliobaitė, I., Fortelius, M., & Stenseth, N. C. (2017). Reconciling taxon senescence with the Red Queen’s hypothesis. Nature, 552, 92–95. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David S. Stevenson
    • 1
  1. 1.SherwoodUK

Personalised recommendations