Advertisement

Red Dwarfs pp 141-170 | Cite as

Deep Cycles and Super-Terrans

  • David S. Stevenson
Chapter

Abstract

Possibly the most important consequence of plate tectonics is the cycling of materials into and out of the mantle. Such a conveyor belt delivers carbon dioxide into the interior in the form of carbonate rock and returns this gas to the atmosphere, thereby modulating the planetary greenhouse effect. One of the more subtle and poorly understood processes is the modulation of surface water—and with it the abundance of many of the ions (both metal and non-metal ions) that regulate the biological capacity of any biosphere that we hope caps our planets of interest.

References

  1. Atreya, S. K. (2010). The significance of trace constituents in the solar system. Faraday Discussions, 147, 9–29. discussion 83–102. https://pdfs.semanticscholar.org/8b6b/6ba63e8b9b4da4d35c664267518fe08c5dfc.pdf.ADSCrossRefGoogle Scholar
  2. Bindeman, I. N., Zakharov, D. O., Palandri, J., Greber, N. D., Dauphas, N., Retallack, G. J., Hofmann, A., Lackey, J. S., & Bekker, A. (2018). Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature, 557, 545–548.  https://doi.org/10.1038/s41586-018-0131-1.ADSCrossRefGoogle Scholar
  3. Brocks, J. J., Jarrett, A. J. M., Sirantoine, E., Hallmann, C., Hoshino, Y., & Liyanage, T. (2017). The rise of algae in Cryogenian oceans and the emergence of animals. Nature, 548, 578.  https://doi.org/10.1038/nature23457.ADSCrossRefGoogle Scholar
  4. Carr, M. H., & Head, J. W. (2015). Martian surface/near-surface water inventory: Sources, sinks, and changes with time. Geophysical Research Letters, 42, 726–732.  https://doi.org/10.1002/2014GL062464. https://pdfs.semanticscholar.org/6a4b/0f49d0f096d165df36da112cdbde0997ca85.pdf.ADSCrossRefGoogle Scholar
  5. Chen, C., Wiens, D. A., Shen, W., & Eimer, M. (2018). Water input into the Mariana subduction zone estimated from ocean-bottom seismic data. Nature, 563, 389–392.  https://doi.org/10.1038/s41586-018-0655-4.ADSCrossRefGoogle Scholar
  6. Condie, K., Pisarevsky, S. A., Korenaga, J., & Gardolle, S. (2015). Is the rate of supercontinent assembly changing with time? Precambrian Research, 259, 278–289.  https://doi.org/10.1016/j.precamres.2014.07.015.ADSCrossRefGoogle Scholar
  7. Dasgupta, R., & Hirschmann, M. M. (2006). Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature, 440, 659–662.  https://doi.org/10.1038/nature04612.ADSCrossRefGoogle Scholar
  8. Edson, A. R., Kasting, J. F., Pollard, D., Lee, S., & Bannon, P. R. (2012). The carbonate-silicate cycle and CO2/climate feedbacks on tidally locked terrestrial planets. Astrobiology, 12(6), 562–571.  https://doi.org/10.1089/ast.2011.0762. Epub 2012 Jul 9.ADSCrossRefGoogle Scholar
  9. Filippelli, G. M. (2008). The global phosphorus cycle: Past, present, and future. Elements, 4, 89–95.  https://doi.org/10.2113/GSELEMENTS.4.2.89.CrossRefGoogle Scholar
  10. Fischer, T. P., Hilton, D. R., Zimmer, M. M., Shaw, A. M., Sharp, Z. D., & Walker, J. A. (2002). Subduction and recycling of nitrogen along the central American margin. Science, 297(5584), 1154–1157.  https://doi.org/10.1126/science.1073995.ADSCrossRefGoogle Scholar
  11. Korenaga, J. (2011). Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth. Journal of Geophysical Research, 116, B12403.  https://doi.org/10.1029/2011JB008410.ADSCrossRefGoogle Scholar
  12. Lee, C.-T. A., Caves, J., Jiang, H., Cao, W., Lenardic, A., McKenzie, N. R., Shorttle, O., Yin, Q.-z., & Dyer, B. (2018). Deep mantle roots and continental emergence: Implications for whole-Earth elemental cycling, long-term climate, and the Cambrian explosion. International Geology Review, 60(4), 431–448.  https://doi.org/10.1080/00206814.2017.1340853.ADSCrossRefGoogle Scholar
  13. Lingam, M. & Loeb, A. (2018a). Dependence of biological activity on the surface water fraction of planets. https://arxiv.org/pdf/1809.09118.pdf.
  14. Lingam, M. & Loeb, A. (2018b). Is extraterrestrial life suppressed on subsurface ocean worlds due to the paucity of bioessential elements? https://arxiv.org/pdf/1806.00018.pdf.
  15. Marty, B., Zimmermann, L., Pujol, M., Burgess, R., & Philippot, P. (2013). Nitrogen isotopic composition and density of the Archean atmosphere. Science, 342, 101–104.  https://doi.org/10.1126/science.1240971.ADSCrossRefGoogle Scholar
  16. Mikhail, S., & Sverjensky, D. A. (2014). Nitrogen speciation in upper mantle fluids and the origin of Earth’s nitrogen-rich atmosphere. Nature Geoscience, 7, 816–819.  https://doi.org/10.1038/ngeo2271.ADSCrossRefGoogle Scholar
  17. Mustard, J. F., Poulet, F., Ehlman, B. E., Milliken, R., & Fraeman, A. (2012). Sequestration of volatiles in the martian crust through hydrated minerals: A significant planetary reservoir of water. In 43rd Lunar and Planetary Science Conference. https://www.lpi.usra.edu/meetings/lpsc2012/pdf/1539.pdf.
  18. Parai, R., & Mukhopadhaya, S. (2018). Xenon isotopic constraints on the history of volatile recycling into the mantle. Nature, 560, 223–227.  https://doi.org/10.1038/s41586-018-0388-4.ADSCrossRefGoogle Scholar
  19. Pearson, D. G., Brenker, F. E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M. T., Matveev, S., Mather, K., Silversmit, G., Schmitz, S., Vekemans, B., & Vincze, L. (2014). Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507, 221–224.  https://doi.org/10.1038/nature13080.ADSCrossRefGoogle Scholar
  20. Rüpkea, L. H., Morgana, J. P., Hortb, M., & Connolly, J. A. D. (2014). Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters, 223, 17–34.  https://doi.org/10.1016/j.epsl.2004.04.018.ADSCrossRefGoogle Scholar
  21. Stagno, V., Ojwang, D. O., McCammon, C. A., & Frost, D. J. (2013). The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature, 493, 84–88.  https://doi.org/10.1038/nature11679.ADSCrossRefGoogle Scholar
  22. Tomkinson, T., Lee, M. R., Mark, D. F., & Smith, C. L. (2013). Sequestration of Martian CO2 by mineral carbonation. Nature Communications, 4, 2662.  https://doi.org/10.1038/ncomms3662.ADSCrossRefGoogle Scholar
  23. Wade, J., Dyck, B., Palin, R. M., Moore, J. D. P., & Smye, A. J. (2017). The divergent fates of primitive hydrospheric water on Earth and Mars. Nature, 552, 391–394.ADSCrossRefGoogle Scholar
  24. Walker, J. C. G., Hays, P. B., & Kasting, J. F. (1981). A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. Journal of Geophysical Research, 86, 9776–9782.ADSCrossRefGoogle Scholar
  25. Zerkle, L., & Mikhail, S. (2017). The geobiological nitrogen cycle: From microbes to the mantle. Geobiology, 15, 343–352.  https://doi.org/10.1111/gbi.12228.CrossRefGoogle Scholar

Diamonds

  1. Berry, A. J., Danyushevsky, L. V., O’Neill, H. S. C., Newville, M., & Sutton, S. R. (2008). Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature, 455, 960–963.  https://doi.org/10.1038/nature07377.ADSCrossRefGoogle Scholar
  2. Bulanova, G. P., Walter, M. J., Smith, C. B., Kohn, S. C., Armstrong, L. S., Blundy, J., & Gobbo, L. (2010). Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contributions to Mineralogy and Petrology, 160(4), 489–510.  https://doi.org/10.1007/s00410-010-0490-6.ADSCrossRefGoogle Scholar
  3. Dobrzhinetskaya, L. F. (2012). Microdiamonds—Frontier of ultrahigh-pressure metamorphism: A review. Gondwana Research, 21(1), 207–223.  https://doi.org/10.1016/j.gr.2011.07.014.ADSCrossRefGoogle Scholar
  4. Evans, R. L. (2008). Carbon in charge. Science, 322, 1338–1340.CrossRefGoogle Scholar
  5. Fischer, T. P., Burnard, P., Marty, B., Hilton, D. R., Füri, E., Palhol, F., Sharp, Z. D., & Mangasini, F. (2009). Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites. Nature, 459, 77–80.  https://doi.org/10.1038/nature07977.ADSCrossRefGoogle Scholar
  6. Haggerty, S. E. (1999). A diamond trilogy; superplumes, supercontinents, and supernovae. Science, 285(5429), 851–860.  https://doi.org/10.1126/science.285.5429.851.ADSCrossRefGoogle Scholar
  7. Pearson, D. G., & Shirey, S. B. (1999). Isotopic dating of diamonds. In D. D. Lambert & J. Ruiz (Eds.), Reviews in economic geology: Application of radiogenic isotopes to ore deposit research and exploration (pp. 143–171). Denver: Society of Economic Geologists.Google Scholar
  8. Levander, A., Bezada, M. J., Niu, F., Humphreys, E. D., Palomeras, I., Thurner, S. M., Masy, J., Schmitz, M., Gallart, J., Carbonell, R., & Miller, M. S. (2014). Subduction-driven recycling of continental margin lithosphere. Nature, 515, 253–256.  https://doi.org/10.1038/nature13878.ADSCrossRefGoogle Scholar
  9. Richardson, S. H., Erlank, A. J., Harris, J. W., & Hart, S. R. (1990). Eclogitic diamonds of Proterozoic age from Cretaceous kimberlites. Nature, 346(6279), 54–56.  https://doi.org/10.1038/346054a0.ADSCrossRefGoogle Scholar
  10. Shirey, S. B., Cartigny, P., Frost, D. J., Keshav, S., Nestola, F., Nimis, P., Pearson, D. G., Sobolev, N. V., & Walter, M. J. (2013). Diamonds and the geology of mantle carbon. Reviews in Mineralogy and Geochemistry, 75(1), 355–421.  https://doi.org/10.2138/rmg.2013.75.12.ADSCrossRefGoogle Scholar
  11. Sparks, R. S. J., Baker, L., Brown, R. J., Field, M., Schumacher, J., Stripp, G., & Walters, A. (2006). Dynamical constraints on kimberlite volcanism. Journal of Volcanology and Geothermal Research, 155(1–2), 18–48.  https://doi.org/10.1016/j.jvolgeores.2006.02.010.ADSCrossRefGoogle Scholar
  12. Weiss, Y., McNeill, J., Pearson, D. G., Nowell, G. M., & Ottley, C. J. (2015). Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature, 524, 339–342.  https://doi.org/10.1038/nature14857.ADSCrossRefGoogle Scholar

Erosion and Deposition

  1. Egholm, D. L., Knudsen, M. F., & Sandiford, M. (2013). Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers. Nature, 498, 475–479.  https://doi.org/10.1038/nature12218.ADSCrossRefGoogle Scholar
  2. Kirchner, J. W., Finkel, R. C., Riebe, C. S., Granger, D. E., Clayton, J. L., King, J. G., & Megahan, W. F. (2001). Mountain erosion over 10 yr, 10 ky, and 10 my time scales. Geology, 29, 591–594.  https://doi.org/10.1130/0091-7613(2001)029<0591:MEOYKY>2.0.CO;2.ADSCrossRefGoogle Scholar
  3. Kirchner, J. W., & Ferrier, K. L. (2013). Mainly in the plain. Nature, 495, 318–319.ADSCrossRefGoogle Scholar
  4. Warrick, J. A., Milliman, J. D., Walling, D. E., Wasson, R. J., Syvitski, J. P. M., & Aalto, R. E. (2014). Earth is (mostly) flat: Apportionment of the flux of continental sediment over millennial time scales: Comment. Geology, 42, e316.  https://doi.org/10.1130/G34846C.1.ADSCrossRefGoogle Scholar
  5. Willenbring, J. K., Codilean, A. T., & McElroy, B. (2013). Earth is (mostly) flat. Apportionment of the flux of continental sediment over millennial time scales. Geology, 41, 343–346.  https://doi.org/10.1130/G33918.1.ADSCrossRefGoogle Scholar
  6. Willenbring, J. K., & von Blanckenburg, F. (2010). Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature, 465, 211–214.  https://doi.org/10.1038/nature09044.ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David S. Stevenson
    • 1
  1. 1.SherwoodUK

Personalised recommendations