# Quantum Security of Hash Functions and Property-Preservation of Iterated Hashing

## Abstract

This work contains two major parts: comprehensively studying the security notions of cryptographic hash functions against quantum attacks and the relationships between them; and revisiting whether Merkle-Damgård and related iterated hash constructions preserve the security properties of the compression function in the quantum setting. Specifically, we adapt the seven notions in Rogaway and Shrimpton (FSE’04) to the quantum setting and prove that the seemingly stronger attack model where an adversary accesses a challenger in quantum superposition does not make a difference. We confirm the implications and separations between the seven properties in the quantum setting, and in addition we construct explicit examples separating an inherently quantum notion called collapsing from several proposed properties. Finally, we pin down the properties that are preserved under several iterated hash schemes. In particular, we prove that the ROX construction in Andreeva et al. (Asiacrypt’07) preserves the seven properties in the quantum random oracle model.

## Keywords

Quantum random-oracle model Post-quantum security definitions Hash functions## Supplementary material

## References

- [AMRS18]Alagic, G., Majenz, C., Russell, A., Song, F.: Quantum-secure message authentication via blind-unforgeability. arXiv preprint arXiv:1803.03761 (2018)
- [ANPS07]Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-property-preserving iterated hashing: ROX. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 130–146. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_8CrossRefGoogle Scholar
- [AR17]Alagic, G., Russell, A.: Quantum-secure symmetric-key cryptography based on hidden shifts. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 65–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_3CrossRefGoogle Scholar
- [ARU14]Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof systems: the hardness of quantum rewinding. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS), pp. 474–483. IEEE (2014)Google Scholar
- [BDF+11]Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3CrossRefzbMATHGoogle Scholar
- [BDPA07]Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In: Ecrypt Hash Workshop (2007). http://sponge.noekeon.org/
- [BR97]Bellare, M., Rogaway, P.: Collision-resistant hashing: towards making UOWHFs practical. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052256CrossRefGoogle Scholar
- [BZ13]Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_21CrossRefzbMATHGoogle Scholar
- [CBH+18]Czajkowski, J., Groot Bruinderink, L., Hülsing, A., Schaffner, C., Unruh, D.: Post-quantum security of the sponge construction. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 185–204. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_9CrossRefzbMATHGoogle Scholar
- [Dam89]Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_39CrossRefGoogle Scholar
- [ES15]Eaton, E., Song, F.: Making existential-unforgeable signatures strongly unforgeable in the quantum random-oracle model. In: 10th Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2015. LIPIcs, vol. 44, pp. 147–162. Schloss Dagstuhl (2015). https://eprint.iacr.org/2015/878
- [HRS16]Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_15CrossRefGoogle Scholar
- [KLLNP16]Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_8CrossRefGoogle Scholar
- [Mer89]Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_40CrossRefGoogle Scholar
- [NIS15]Secure hash standard (SHS) & SHA-3 standard. FIPS PUB 180–4 & 202 (2015). http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
- [RS04]Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: definitions, implications, and separations for preimage resistance, second-preimage resistance, and collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 371–388. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-4_24CrossRefGoogle Scholar
- [Sho00]Shoup, V.: A composition theorem for universal one-way hash functions. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_32CrossRefGoogle Scholar
- [Son14]Song, F.: A note on quantum security for post-quantum cryptography. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 246–265. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4_15CrossRefzbMATHGoogle Scholar
- [SS17]Santoli, T.: Schaffner, Christian: using Simon’s algorithm to attack symmetric-key cryptographic primitives. Quantum Inf. Comput.
**17**(1&2), 65–78 (2017)MathSciNetGoogle Scholar - [Unr12]Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_10CrossRefGoogle Scholar
- [Unr14]Unruh, D.: Quantum position verification in the random oracle model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 1–18. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_1CrossRefGoogle Scholar
- [Unr16a]Unruh, D.: Collapse-binding quantum commitments without random oracles. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 166–195. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_6CrossRefGoogle Scholar
- [Unr16b]Unruh, D.: Computationally binding quantum commitments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 497–527. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_18CrossRefGoogle Scholar
- [Wat09]Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput.
**39**(1), 25–58 (2009)MathSciNetCrossRefGoogle Scholar - [Zha12a]Zhandry, M.: How to construct quantum random functions. In: FOCS 2012, pp. 679–687. IEEE (2012)Google Scholar
- [Zha12b]Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_44CrossRefzbMATHGoogle Scholar