Advertisement

Hybrid Key Encapsulation Mechanisms and Authenticated Key Exchange

  • Nina Bindel
  • Jacqueline BrendelEmail author
  • Marc Fischlin
  • Brian Goncalves
  • Douglas Stebila
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11505)

Abstract

Concerns about the impact of quantum computers on currently deployed public key cryptography have instigated research into not only quantum-resistant cryptographic primitives but also how to transition applications from classical to quantum-resistant solutions. One approach to mitigate the risk of quantum attacks and to preserve common security guarantees are hybrid schemes, which combine classically secure and quantum-resistant schemes. Various academic and industry experiments and draft standards related to the Transport Layer Security (TLS) protocol already use some form of hybrid key exchange; however sound theoretical approaches to substantiate the design and security of such hybrid key exchange protocols are missing so far.

We initiate the modeling of hybrid authenticated key exchange protocols, considering security against adversaries with varying levels of quantum power over time, such as adversaries who may become quantum in the future or are quantum in the present. We reach our goal using a three-step approach: First, we introduce security notions for key encapsulation mechanisms (KEMs) that enable a fine-grained distinction between different quantum scenarios. Second, we propose several combiners for constructing hybrid KEMs that correspond closely to recently proposed Internet-Drafts for hybrid key exchange in TLS 1.3. Finally, we present a provably sound design for hybrid key exchange using KEMs as building blocks.

Keywords

Key exchange Hybrid key exchange Combiners KEMs 

Notes

Acknowledgments

We thank the anonymous reviewers for valuable comments. N.B. and J.B. have been supported by the German Research Foundation (DFG) as part of the projects P1 and S4, respectively, within the CRC 1119 CROSSING. J.B. has been funded as part of project D.2 within the DFG RTG 2050 “Privacy and Trust for Mobile Users”. B.G. and D.S. have been supported in part by NSERC Discovery grant RGPIN-2016-05146 and an NSERC Discovery Accelerator Supplement.

References

  1. 1.
    Alagic, G., Gagliardoni, T., Majenz, C.: Unforgeable quantum encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 489–519. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78372-7_16CrossRefGoogle Scholar
  2. 2.
    Albrecht, M.R., et al.: Estimate all the \(\{\)LWE, NTRU\(\}\) schemes!. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98113-0_19CrossRefGoogle Scholar
  3. 3.
    Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum Key Exchange—a new hope. In: 25th USENIX Security Symposium (USENIX Security 2016), pp. 327–343. USENIX Association, Austin (2016)Google Scholar
  4. 4.
    Bellare, M.: New proofs for NMAC and HMAC: security without collision-resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Heidelberg (2006).  https://doi.org/10.1007/11818175_36CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68697-5_1CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and analysis of authentication and key exchange protocols (extended abstract). In: 30th ACM STOC, pp. 419–428. ACM Press, May 1998Google Scholar
  7. 7.
    Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries in message authentication and authenticated encryption. Cryptology ePrint Archive, Report 2004/309 (2004). http://eprint.iacr.org/2004/309
  8. 8.
    Bellare, M., Lysyanskaya, A.: Symmetric and dual PRFs from standard assumptions: a generic validation of an HMAC assumption. Cryptology ePrint Archive, Report 2015/1198 (2015). http://eprint.iacr.org/2015/1198
  9. 9.
    Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48329-2_21CrossRefGoogle Scholar
  10. 10.
    Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.V.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997).  https://doi.org/10.1137/S0097539796300933MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bindel, N., Brendel, J., Fischlin, M., Goncalves, B., Stebila, D.: Hybrid key encapsulation mechanisms and authenticated key exchange. Cryptology ePrint Archive, Report 2018/903 (2018). https://eprint.iacr.org/2018/903
  12. 12.
    Bindel, N., Herath, U., McKague, M., Stebila, D.: Transitioning to a quantum-resistant public key infrastructure. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 384–405. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59879-6_22CrossRefzbMATHGoogle Scholar
  13. 13.
    Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_3CrossRefzbMATHGoogle Scholar
  14. 14.
    Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 592–608. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_35CrossRefGoogle Scholar
  15. 15.
    Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_21CrossRefzbMATHGoogle Scholar
  16. 16.
    Bos, J.W., et al.: Frodo: take off the ring! practical, quantum-secure key exchange from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1006–1018. ACM Press, October 2016Google Scholar
  17. 17.
    Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Symposium on Security and Privacy, pp. 553–570. IEEE Computer Society Press, May 2015Google Scholar
  18. 18.
    Boyd, C., Cliff, Y., Gonzalez Nieto, J., Paterson, K.G.: Efficient one-round key exchange in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70500-0_6CrossRefGoogle Scholar
  19. 19.
    Braithwaite, M.: Google Security Blog: Experimenting with post-quantum cryptography, July 2016. https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
  20. 20.
    Brendel, J., Fischlin, M., Günther, F.: Breakdown resilience of key exchange protocols and the cases of NewHope and TLS 1.3. Cryptology ePrint Archive, Report 2017/1252 (2017). https://eprint.iacr.org/2017/1252
  21. 21.
    Brzuska, C.: On the foundations of key exchange. Ph.D. thesis, Technische Universität Darmstadt, Darmstadt, Germany (2013). http://tuprints.ulb.tu-darmstadt.de/3414/
  22. 22.
    Brzuska, C., Fischlin, M., Warinschi, B., Williams, S.C.: Composability of Bellare-Rogaway key exchange protocols. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACM CCS 2011, pp. 51–62. ACM Press, October 2011Google Scholar
  23. 23.
    Costello, C., Easterbrook, K., LaMacchia, B., Longa, P., Naehrig, M.: SIDH Library, April 2016. Peace-of-mind hybrid key exchange mode https://www.microsoft.com/en-us/research/project/sidh-library/
  24. 24.
    Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30576-7_11CrossRefzbMATHGoogle Scholar
  25. 25.
    Even, S., Goldreich, O.: On the power of cascade ciphers. ACM Trans. Comput. Syst. 3(2), 108–116 (1985)CrossRefGoogle Scholar
  26. 26.
    Giacon, F., Heuer, F., Poettering, B.: KEM combiners. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 190–218. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76578-5_7CrossRefGoogle Scholar
  27. 27.
    Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners for oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_6CrossRefGoogle Scholar
  28. 28.
    Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_12CrossRefzbMATHGoogle Scholar
  29. 29.
    Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 273–293. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_17CrossRefzbMATHGoogle Scholar
  30. 30.
    Katz, J., Lindell, A.Y.: Aggregate message authentication codes. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 155–169. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-79263-5_10CrossRefGoogle Scholar
  31. 31.
    Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. J. Cryptol. 20(1), 85–113 (2007)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Krawczyk, H.: SIGMA: the “SIGn-and-MAc” approach to authenticated Diffie-Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_24CrossRefGoogle Scholar
  33. 33.
    Langley, A.: Intent to Implement and Ship: CECPQ1 for TLS, July 2016. Google group https://groups.google.com/a/chromium.org/forum/#!topic/security-dev/DS9pp2U0SAc
  34. 34.
    Li, Y., Schäge, S., Yang, Z., Bader, C., Schwenk, J.: New modular compilers for authenticated key exchange. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 1–18. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07536-5_1CrossRefGoogle Scholar
  35. 35.
    Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, August 2018. https://rfc-editor.org/rfc/rfc8446.txt
  36. 36.
    de Saint Guilhem, C., Smart, N.P., Warinschi, B.: Generic forward-secure key agreement without signatures. In: Nguyen, P., Zhou, J. (eds.) ISC 2017. LNCS, vol. 10599, pp. 114–133. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69659-1_7CrossRefGoogle Scholar
  37. 37.
    Schank, J., Stebila, D.: A Transport Layer Security (TLS) Extension For Establishing An Additional Shared Secret draft-schanck-tls-additional-keyshare-00, April 2017. https://tools.ietf.org/html/draft-schanck-tls-additional-keyshare-00
  38. 38.
    de Valence, H.: SIDH in Go for quantum-resistant TLS 1.3, September 2017. https://blog.cloudflare.com/sidh-go/
  39. 39.
    Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981).  https://doi.org/10.1016/0022-0000(81)90033-7MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Whyte, W., Fluhrer, S., Zhang, Z., Garcia-Morchon, O.: Quantum-Safe Hybrid (QSH) Key Exchange for Transport Layer Security (TLS) version 1.3 draft-whyte-qsh-tls13-06, October 2017. https://tools.ietf.org/html/draft-whyte-qsh-tls13-06
  41. 41.
    Zhandry, M.: How to construct quantum random functions. In: 53rd FOCS, pp. 679–687. IEEE Computer Society Press, October 2012Google Scholar
  42. 42.
    Zhang, R., Hanaoka, G., Shikata, J., Imai, H.: On the security of multiple encryption or CCA-security+CCA-security=CCA-security? In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 360–374. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24632-9_26CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nina Bindel
    • 1
  • Jacqueline Brendel
    • 1
    Email author
  • Marc Fischlin
    • 1
  • Brian Goncalves
    • 2
  • Douglas Stebila
    • 3
  1. 1.Technische Universität DarmstadtDarmstadtGermany
  2. 2.Ryerson UniversityTorontoCanada
  3. 3.University of WaterlooWaterlooCanada

Personalised recommendations