Fungal Enzymes for Bioremediation of Contaminated Soil

  • Prem Chandra
  • Enespa
Part of the Fungal Biology book series (FUNGBIO)


Using important various fungal enzymes has been in practice for the removal of contaminants in the soil which is polluted by various effluents. The white rot fungi are more effective in biodegrading a wide range of organic molecules due to their release of extracellular lignin transforming enzymes. Various enzymes are employed for biodegrading lignin, and these include lignin-peroxidase (LiP), manganese peroxidase (MnP), various H2O2-producing enzymes, and laccase. The biodegradation can be improved by the addition of carbon sources such as sawdust, straw, and corn cob at various soil polluted sites. Various ecological groups are deliberated for the bioremediation, that is, the white rot fungi, brown rot fungi (the saprotrophic basidiomycetes), and the ectomycorrhizal basidiomycetes have the capability for in vitro biodegradation of simple and recalcitrant hydrocarbons like PAH, persistent organic pollutants (POPs), halogenated HC, aromatic HC and phenols, explosives and dyes, and this was reported for many species in contaminated soil at various sites. Several fungal strains such as Agaricus sp., Amanita sp., Cortinarius sp., Boletus sp., Leccinum sp., Suillus sp., Pleurotus sp. and Phellinus sp. are some of the mushrooms applicable for the mobilization/complexation of heavy metals Cd, Cr, Hg, Pb, Cu, Zn, and As in soil. Carcinogenic secondary metabolite aflatoxin B1 (AFB1), a natural toxin and heavy metal, is biodegraded by P. ostreatus, an edible mushroom. Various potentially toxic trace elements (PTEs) are also accumulated in the fruiting bodies of mushrooms like Phellinus badius, Amanita spissa, Lactarius piperatus, Suillus grevillei, Agaricus bisporus, Tricholoma terreum, and Fomes fomentarius. The accumulation capability was higher than that of plants, vegetables, and fruits.


Bioremediation enzymes fungi heavy metals mycoremediation and pesticides 



The authors are grateful to the Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, and Department of Plant Pathology, School for Agriculture, MPDC, University of Lucknow, Lucknow, for providing valuable support to write this chapter. There are no conflicts of interest.


  1. Abraham J, Shanker A, Silambarasan S (2013) Role of Gordonia sp. JAAS 1 in biodegradation of chlorpyrifos and its hydrolysing metabolite 3, 5, 6-trichloro-2-pyridinol. Lett Appl Microbiol 57(6):510–516PubMedCrossRefGoogle Scholar
  2. Akar T, Anilan B, Kaynak Z, Gorgulu A, Akar ST (2008) Batch and dynamic flow biosorption potential of Agaricus bisporus/Thuja orientalis biomass mixture for decolorization of RR45 dye. Ind Eng Chem Res 47(23):9715–9723CrossRefGoogle Scholar
  3. Alamgir ANM (2018) Therapeutic use of medicinal plants and their extracts: Volume 2: phytochemistry and bioactive compounds. Springer International Publishing, ChamCrossRefGoogle Scholar
  4. Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2013) Essential cell biology. Garland Science/Taylor & Francis Group, New YorkGoogle Scholar
  5. Alexander SP, Fabbro D, Kelly E, Marrion NV, Peters JA, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA (2017) The concise guide to PHARMACOLOGY 2017/18: enzymes. Br J Pharm 174:272–359CrossRefGoogle Scholar
  6. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881CrossRefGoogle Scholar
  7. Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Alloway BJ (ed) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer Netherlands, Dordrecht, pp 11–50CrossRefGoogle Scholar
  8. Alvarez A, Saez JM, Costa JSD, Colin VL, Fuentes MS, Cuozzo SA, Benimeli CS, Polti MA, Amoroso MJ (2017) Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166:41–62PubMedCrossRefGoogle Scholar
  9. Anasonye F, Winquist E, Kluczek-Turpeinen B, Räsänen M, Salonen K, Steffen KT, Tuomela M (2014) Fungal enzyme production and biodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in contaminated sawmill soil. Chemosphere 110:85–90PubMedCrossRefGoogle Scholar
  10. Anasonye F, Winquist E, Räsänen M, Kontro J, Björklöf K, Vasilyeva G, Jørgensen KS, Steffen KT, Tuomela M (2015) Bioremediation of TNT contaminated soil with fungi under laboratory and pilot scale condition. Int Biodeterior Biodegradation 105:7–12CrossRefGoogle Scholar
  11. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. JBIC J Biolog Inorg Chem 13(8):1205–1218CrossRefGoogle Scholar
  12. Anyasi RO, Atagana HL (2011) Biological remediation of polychlorinated biphenyls (PCB) in the environment by microorganisms and plants. Afr J Biotechnol 10(82):18916–18938CrossRefGoogle Scholar
  13. Aragay G, Pons J, Merkoçi A (2011) Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev 111(5):3433–3458PubMedCrossRefGoogle Scholar
  14. Babič MN, Gunde-Cimerman N, Vargha M, Tischner Z, Magyar D, Veríssimo C, Sabino R, Viegas C, Meyer W, Brandão J (2017) Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. Int J Environ Res Public Health 14(6):636CrossRefGoogle Scholar
  15. Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzym Microb Technol 32(1):78–91CrossRefGoogle Scholar
  16. Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778PubMedCrossRefGoogle Scholar
  17. Barsainya M, Chandra P, Singh DP (2016) Investigation of Cr (VI) uptake in saline condition using psychrophilic and mesophilic Penicillium sp. Int J Curr Microbiol Appl Sci 5:274-288Google Scholar
  18. Bhadbhade BJ, Sarnaik SS, Kanekar PP (2002) Biomineralization of an organophosphorus pesticide, Monocrotophos, by soil bacteria. J Appl Microbiol 93(2):224–234PubMedCrossRefGoogle Scholar
  19. Bhatnagar A, Minocha AK (2010) Biosorption optimizations of nickel removal from water using Punica granatum peel waste. Colloids Surf B Biointerfaces 76(2):544–548PubMedCrossRefGoogle Scholar
  20. Blackwell M (2011) The Fungi: 1, 2, 3… 5.1 million species? Am J Bot 98(3):426–438PubMedCrossRefGoogle Scholar
  21. Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74(1):63–67CrossRefGoogle Scholar
  22. Bosco F, Mollea C (2019) Mycoremediation in soil. In: Biodegradation processes. Intech Open, London Bridge Street, UK, pp 1–1632Google Scholar
  23. Boswell GP, Jacobs H, Ritz K, Gadd GM, Davidson FA (2007) The development of fungal networks in complex environments. Bull Math Biol 69(2):605PubMedCrossRefPubMedCentralGoogle Scholar
  24. Branham B, Miltner ERIC, Rieke P (1995) Potential groundwater contamination from pesticides and fertilizers used on golf courses. USGA Green Sect Rec 33(1):33–37Google Scholar
  25. Burridge L, Weis JS, Cabello F, Pizarro J, Bostick K (2010) Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306(1–4):7–23CrossRefGoogle Scholar
  26. Cajthaml T (2015) Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: mechanisms involved in the degradation. Environ Microbiol 17(12):4822–4834PubMedCrossRefPubMedCentralGoogle Scholar
  27. Camarero S, Ibarra D, Martínez ÁT, Romero J, Gutiérrez A, José C (2007) Paper pulp delignification using laccase and natural mediators. Enzym Microb Technol 40(5):1264–1271CrossRefGoogle Scholar
  28. Chandra P, Singh DP (2014) Removal of Cr (VI) by a halotolerant bacterium Halomonas sp. CSB 5 isolated from Sāmbhar salt lake Rajasthan (India). Cell Mol Biol 60(5):64–72Google Scholar
  29. Chandra, Enespa (2016) Applications and mechanisms of plant growth-stimulating rhizobacteria. In: Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 37–62CrossRefGoogle Scholar
  30. Chandra P, Enespa (2019) Mycoremediation of environmental pollutants from contaminated soil. In: Mycorrhizosphere and pedogenesis. Springer, Singapore, pp 239–274Google Scholar
  31. Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11(1):233–260CrossRefGoogle Scholar
  32. Chen F, Ying GG, Yang GF, Zhao JL, Wang L (2010) Rapid resolution liquid chromatography-tandem mass spectrometry method for the determination of endocrine disrupting chemicals (EDCs), pharmaceuticals and personal care products (PPCPs) in wastewater irrigated soils. J Environ Sci Health Part B 45(7):682–693CrossRefGoogle Scholar
  33. Christian V, Shrivastava R, Shukla D, Modi HA, Vyas BRM (2005) Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved. Indian J Exp Biol 43:301–312PubMedGoogle Scholar
  34. Clodoveo ML, Hbaieb RH, Kotti F, Mugnozza GS, Gargouri M (2014) Mechanical strategies to increase nutritional and sensory quality of virgin olive oil by modulating the endogenous enzyme activities. Compr Rev Food Sci Food Saf 13(2):135–154CrossRefGoogle Scholar
  35. Cohen R, Hadar Y (2001) The roles of fungi in agricultural waste conversion. Br Myco Soc Symp 23:305–334Google Scholar
  36. Cohen R, Persky L, Hadar Y (2002) Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl Microbiol Biotechnol 58(5):582–594PubMedCrossRefGoogle Scholar
  37. Colborn T, Vom Saal FS, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101(5):378PubMedPubMedCentralCrossRefGoogle Scholar
  38. Covino S, Stella T, Cajthaml T (2016) Mycoremediation of organic pollutants: principles, opportunities, and pitfalls. In: Fungal applications in sustainable environmental biotechnology. Springer, Cham, pp 185–231CrossRefGoogle Scholar
  39. Darbre PD (2015) What are endocrine disrupters and where are they found? In: Endocrine disruption and human health. Academic Press, London, UK, pp 3–26Google Scholar
  40. Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena R, Formanek P (2017) Enzymatic degradation of lignin in soil: a review. Sustainability 9(7):1163CrossRefGoogle Scholar
  41. Denard CA, Hartwig JF, Zhao H (2013) Multistep one-pot reactions combining biocatalysts and chemical catalysts for asymmetric synthesis. ACS Catal 3(12):2856–2864CrossRefGoogle Scholar
  42. Deng Z, Cao L, Huang H, Jiang X, Wang W, Shi Y, Zhang R (2011) Characterization of Cd-and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil. J Hazard Mater 185(2–3):717–724PubMedCrossRefGoogle Scholar
  43. Dhal B, Thatoi HN, Das NN, Pandey BD (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250:272–291PubMedCrossRefGoogle Scholar
  44. Dodgen LK, Li J, Wu X, Lu Z, Gan JJ (2014) Transformation and removal pathways of four common PPCP/EDCs in soil. Environ Pollut 193:29–36PubMedPubMedCentralCrossRefGoogle Scholar
  45. Duarte RMBO, Matos JTV, Senesi N (2018) Organic pollutants in soils. In: Duarte AC, Cachada A, Rocha Santos T (eds) Soil pollution from monitoring to remediation. Elsevier/Academic Press, London, pp 103–126Google Scholar
  46. Dubos RJ (1987) Mirage of Health: Utopias, progress, and biological change. Rutgers University Press, New Brunswick/New JerseyGoogle Scholar
  47. Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118Google Scholar
  48. Dwivedi SK, Enespa (2014) Evaluation of heavy metals toxicity against soil-borne fusarial pathogens causing wilt in vegetable crops. Journal of Mycopathological Research 52 (1): 69-73Google Scholar
  49. Enespa, Chandra P (2017) Microbial volatiles as chemical weapons against pathogenic fungi. In: Volatiles and food security. Springer, Singapore, pp 227–254CrossRefGoogle Scholar
  50. Eriksson KEL, Blanchette RA, Ander P (1990) Biodegradation of cellulose. In: Microbial and enzymatic degradation of wood and wood components. Springer, Berlin/Heidelberg, pp 89–180CrossRefGoogle Scholar
  51. Faber K, Faber K (1992) Biotransformations in organic chemistry, vol 4. Springer-Verlag, BerlinCrossRefGoogle Scholar
  52. Fan CY, Krishnamurthy S (1995) Enzymes for enhancing bioremediation of petroleum-contaminated soils: a brief review. J Air Waste Manag Assoc 45(6):453–460PubMedCrossRefGoogle Scholar
  53. Ferhan M (2016) A review on Bark Valorization for bio-based polyphenolic and polyaromatic compounds. J Biochem Biotechnol Biomat 1(1):1–15Google Scholar
  54. Fleischer M, Sarofim AF, Fassett DW, Hammond P, Shacklette HT, Nisbet IC, Epstein S (1974) Environmental impact of cadmium: a review by the Panel on Hazardous Trace Substances. Environ Health Perspect 7:253PubMedPubMedCentralCrossRefGoogle Scholar
  55. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336(6089):1715–1719PubMedCrossRefGoogle Scholar
  56. Förstner U, Wittmann GT (2012) Metal pollution in the aquatic environment. Springer Science & Business Media, Berlin/Heidelberg/New York/TokyoGoogle Scholar
  57. Galhaup C, Haltrich D (2001) Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl Microbiol Biotechnol 56(1–2):225–232PubMedCrossRefGoogle Scholar
  58. Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163(2–3):475–510PubMedCrossRefGoogle Scholar
  59. Giesy JP, Kannan K (1998) Dioxin-like and non-dioxin-like toxic effects of polychlorinated biphenyls (PCBs): implications for risk assessment. Crit Rev Toxicol 28(6):511–569PubMedCrossRefGoogle Scholar
  60. Girish KS, Kemparaju K (2007) The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 80(21):1921–1943PubMedCrossRefGoogle Scholar
  61. Glasser FP (2001) Mineralogical aspects of cement in radioactive waste disposal. Mineral Mag 65(5):621–633CrossRefGoogle Scholar
  62. Gomes HI, Dias-Ferreira C, Ribeiro AB (2013) Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci Total Environ 445:237–260PubMedCrossRefGoogle Scholar
  63. Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130(3):317–323PubMedCrossRefGoogle Scholar
  64. Goodman BE (2010) Insights into digestion and absorption of major nutrients in humans. Adv Physiol Educ 34(2):44–53PubMedCrossRefGoogle Scholar
  65. Goudopoulou A, Krimitzas A, Typas MA (2010) Differential gene expression of ligninolytic enzymes in Pleurotus ostreatus grown on olive oil mill wastewater. Appl Microbiol Biotechnol 88(2):541–551PubMedCrossRefGoogle Scholar
  66. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511PubMedCrossRefGoogle Scholar
  67. Hall JZ (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hamelinck CN, Van Hooijdonk G, Faaij AP (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term. Biotechnol Bioeng 28(4):384–410Google Scholar
  69. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1–3):1–15PubMedCrossRefGoogle Scholar
  70. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177PubMedCrossRefGoogle Scholar
  71. Hofrichter M (2002) Lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30(4):454–466CrossRefGoogle Scholar
  72. Howdeshell KL, Peterman PH, Judy BM, Taylor JA, Orazio CE, Ruhlen RL, Vom Saal FS, Welshons WV (2003) Bisphenol A is released from used polycarbonate animal cages into water at room temperature. Environ Health Perspect 111(9):1180PubMedPubMedCentralCrossRefGoogle Scholar
  73. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098CrossRefGoogle Scholar
  74. Igiehon NO, Babalola OO (2017) Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol 101(12):4871–4881PubMedCrossRefGoogle Scholar
  75. Jan S, Parray JA (2016) Use of mycorrhiza as metal tolerance strategy in plants. In: Approaches to heavy metal tolerance in plants. Springer, Singapore, pp 57–68CrossRefGoogle Scholar
  76. Jebapriya GR, Gnanadoss JJ (2013) Bioremediation of textile dye using white rot fungi: a review. Int J Curr Res Rev 5(3):1Google Scholar
  77. Josefsson S, Bergknut M, Futter MN, Jansson S, Laudon H, Lundin L, Wiberg K (2016) Persistent organic pollutants in streamwater: influence of hydrological conditions and landscape type. Environ Sci Technol 50(14):7416–7424PubMedCrossRefGoogle Scholar
  78. Joy J, Jose C, Mathew PL, Thomas S, Khalaf MN (2015) Biological delignification of biomass. In: Green polymers and environmental pollution control. CRC Press, Taylor & Francis Group, Broken Sound Parkway NW, pp. 271–291Google Scholar
  79. Kabiersch G, Rajasärkkä J, Ullrich R, Tuomela M, Hofrichter M, Virta M, Hatakka A, Steffen K (2011) Fate of bisphenol A during treatment with the litter-decomposing fungi Stropharia rugosoannulata and Stropharia coronilla. Chemosphere 83(3):226–232PubMedCrossRefGoogle Scholar
  80. Kapahi M, Sachdeva S (2017) Mycoremediation potential of Pleurotus species for heavy metals: a review. Bioresour Bioprocess 4(32):1–9Google Scholar
  81. Karademir A, Ergül HA, Telli B, Kılavuz SA, Terzi M (2013) Evaluation of PCDD/F pollution in surface sediments of Izmit Bay. Environ Sci Pollut Res 20(9):6611–6619CrossRefGoogle Scholar
  82. Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzym Res 2011:1–11CrossRefGoogle Scholar
  83. Karwade A, Bhiogade G, Suryawanshi JG, Bhujade AV (2018) Oil extraction, biodiesel production and CI engine investigation using Madhuca indica Methyl Ester. In: Energy and environment. Springer, Singapore, pp 207–218CrossRefGoogle Scholar
  84. Kaur H (2016) Studies of lignin modifying enzymes of a white rot fungus Ganoderma lucidum (P. karst) for their biotechnological application (Doctoral dissertation, Punjab Agricultural University, Ludhiana)Google Scholar
  85. Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18(4):355–364PubMedCrossRefGoogle Scholar
  86. Kinnunen A, Maijala P, JArvinen P, Hatakka A (2017) Improved efficiency in screening for lignin-modifying peroxidases and laccases of basidiomycetes. Curr Biotechnol 6(2):105–115CrossRefGoogle Scholar
  87. Kirk TK, Farrell RL (1987) Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol 41(1):465–501PubMedCrossRefGoogle Scholar
  88. Kour D, Rana KL, Yadav N, Yadav AN, Rastegari AA, Singh C, Negi P, Singh K, Saxena AK (2019a) Technologies for biofuel production: current development, challenges, and future prospects. In: Rastegari AA, Yadav AN, Gupta A (eds) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, Cham, pp 1–50. Scholar
  89. Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019b) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Volume 2: perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64. Scholar
  90. Kumar VV (2017) Mycoremediation: a step toward cleaner environment. In: Mycoremediation and environmental sustainability. Springer, Cham, pp 171–187CrossRefGoogle Scholar
  91. Kumar KS, Dahms HU, Won EJ, Lee JS, Shin KH (2015) Microalgae-A promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352CrossRefGoogle Scholar
  92. Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77(19):7007–7015PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lasat MM (1999) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Sub Res 2:1–25Google Scholar
  94. Lechat H, Amat M, Mazoyer J, Buléon A, Lahaye M (2000) Structure and distribution of glucomannan and sulfated glucan in the cell walls of the red alga Kappaphycus alvarezii (Gigartinales, Rhodophyta). J Phycol 36(5):891–902CrossRefGoogle Scholar
  95. Lee KM, Kalyani D, Tiwari MK, Kim TS, Dhiman SS, Lee JK, Kim IW (2012) Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour Technol 123:636–645PubMedCrossRefPubMedCentralGoogle Scholar
  96. Leonowicz A, Cho N, Luterek J, Wilkolazka A, Wojtas WM, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41(3–4):185–227PubMedCrossRefPubMedCentralGoogle Scholar
  97. Liers C, Pecyna MJ, Kellner H, Worrich A, Zorn H, Steffen KT, Hofrichter M, Ullrich R (2013) Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood-and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases. Appl Microbiol Biotechnol 97(13):5839–5849PubMedCrossRefPubMedCentralGoogle Scholar
  98. Loraine GA, Pettigrove ME (2006) Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern California. Environ Sci Technol 40(3):687–695PubMedCrossRefPubMedCentralGoogle Scholar
  99. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques–A review. Chemosphere 73(4):429–442PubMedCrossRefPubMedCentralGoogle Scholar
  100. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577PubMedPubMedCentralCrossRefGoogle Scholar
  101. Madhavi V, Lele SS (2009) Laccase: properties and applications. Bioresources 4(4):1694–1717Google Scholar
  102. Malyarenko DI, Cooke WE, Adam BL, Malik G, Chen H, Tracy ER, Trosset MW, Sasinowski M, Semmes OJ, Manos DM (2005) Enhancement of sensitivity and resolution of surface-enhanced laser desorption/ionization time-of-flight mass spectrometric records for serum peptides using time-series analysis techniques. Clin Chem 51(1):65–74PubMedCrossRefGoogle Scholar
  103. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232CrossRefGoogle Scholar
  104. Matschullat J (2000) Arsenic in the geosphere- a review. Sci Total Environ 249(1–3):297–312PubMedCrossRefPubMedCentralGoogle Scholar
  105. Merckx VSFT (2013) Mycoheterotrophy: an introduction. In: Mycoheterotrophy. Springer, New York, pp 1–17CrossRefGoogle Scholar
  106. Mezcua M, Martínez-Uroz MA, Gómez-Ramos MM, Gómez MJ, Navas JM, Fernández-Alba AR (2012) Analysis of synthetic endocrine-disrupting chemicals in food: a review. Talanta 100:90–106PubMedCrossRefPubMedCentralGoogle Scholar
  107. Michael Q (1998) Environmental risk assessment in business. In: Handbook of environmental risk assessment and management. Blackwell Scence, London, pp 402–416Google Scholar
  108. Mikszewski A (2004) Emerging technologies for the in situ remediation of PCB-contaminated soils and sediments: bioremediation and nanoscale zero-valent Iron. Status Report prepared for the US EPA Technology Office under a Technology Innovation Program Washington, DCGoogle Scholar
  109. Millati R, Syamsiah S, Niklasson C, Cahyanto MN, Ludquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources 6(4):5224–5259Google Scholar
  110. Miller RM, Fitzsimons MS (2011) Fungal growth in soils. In: The architecture and biology of soils: life in inner space. Cabi International, London, pp 149–163CrossRefGoogle Scholar
  111. Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents a critical review. J Hazard Mater 142(1–2):1–53PubMedCrossRefPubMedCentralGoogle Scholar
  112. Mohapatra D, Rath SK, Mohapatra PK (2018) Bioremediation of insecticides by white-rot fungi and its environmental relevance. In Mycoremediation and Environmental Sustainability. Springer, Cham, pp 181–212Google Scholar
  113. Mouhamadou B, Faure M, Sage L, Marçais J, Souard F, Geremia RA (2013) Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal Biol 117(4):268–274PubMedCrossRefPubMedCentralGoogle Scholar
  114. Mueller JG, Chapman PJ, Pritchard PH (1989) Creosote-contaminated sites. Their potential for bioremediation. Environ Sci Technol 23(10):1197–1201CrossRefGoogle Scholar
  115. Munoz-Munoz J, Cartmell A, Terrapon N, Baslé A, Henrissat B, Gilbert HJ (2017) An evolutionarily distinct family of polysaccharide lyases removes rhamnose capping of complex arabinogalactan proteins. J Biol Chem 292(32):13271–13283PubMedPubMedCentralCrossRefGoogle Scholar
  116. Nannipieri P, Ascher J, Ceccherini M, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54(4):655–670CrossRefGoogle Scholar
  117. Neagoe A, Iordache V, Kothe E (2013) Upscaling the biogeochemical role of arbuscular mycorrhizal fungi in metal mobility. In: Fungi as bioremediators. Springer, Berlin/Heidelberg, pp 285–311CrossRefGoogle Scholar
  118. Nelson DL, Lehninger AL, Cox MM (2008) Lehninger principles of biochemistry. Macmillan: W.H. Freeman, New YorkGoogle Scholar
  119. Oliveira L, Cordeiro N, Evtuguin DV, Torres IC, Silvestre AJD (2007) Chemical composition of different morphological parts from ‘Dwarf Cavendish’banana plant and their potential as a non-wood renewable source of natural products. Ind Crop Prod 26(2):163–172CrossRefGoogle Scholar
  120. Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66(3):920–924PubMedPubMedCentralCrossRefGoogle Scholar
  121. Palmieri G, Cennamo G, Faraco V, Amoresano A, Sannia G, Giardina P (2003) Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzym Microb Technol 33(2–3):220–230CrossRefGoogle Scholar
  122. Pandey C, Prabha D, Negi YK (2018) Mycoremediation of common agricultural pesticides. In: Mycoremediation and environmental sustainability. Springer, Cham, pp 155–179CrossRefGoogle Scholar
  123. Papanikolaou S, Komaitis M, Aggelis G (2004) Single Cell Oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95(3):287–291PubMedCrossRefGoogle Scholar
  124. Parlevliet JE (2002) Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica 124(2):147–156CrossRefGoogle Scholar
  125. Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments 58(3):179–196CrossRefGoogle Scholar
  126. Pecyna MJ, Ullrich R, Bittner B, Clemens A, Scheibner K, Schubert R, Hofrichter M (2009) Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl Microbiol Biotechnol 84(5):885–897PubMedCrossRefGoogle Scholar
  127. Pérez J, Munoz-Dorado J, de la Rubia TDLR, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5(2):53–63PubMedCrossRefGoogle Scholar
  128. Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27PubMedCrossRefGoogle Scholar
  129. Peu P (2014) Jiang-Hao Tian, Anne-Marie Pourcher, Théodore Bouchez, Eric Gelhaye and Appl Microbiol Biotechnol 98: 9527–9544PubMedCrossRefGoogle Scholar
  130. Pollegioni L, Tonin F, Rosini E (2015) Lignin degrading enzymes. FEBS J 282(7):1190–1213PubMedCrossRefGoogle Scholar
  131. Prado FE, Hilal M, Chocobar-Ponce S, Pagano E, Rosa M, Prado C (2016) Chromium and the plant: a dangerous affair? In: Plant metal interaction. Elsevier, pp 149–177Google Scholar
  132. Purohit J, Chattopadhyay A, Biswas MK, Singh NK (2018) Mycoremediation of agricultural soil: bioprospection for sustainable development. In: Mycoremediation and environmental sustainability. Springer, Cham, pp 91–120CrossRefGoogle Scholar
  133. Quinlan RJ, Sweeney MD, Leggio LL, Otten H, Poulsen JCN, Johansen KS, Krogh KB, Jørgensen CI, Tovborg M, Anthonsen A, Tryfona T (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Nat Acad Sci 108(37):15079–15084PubMedCrossRefGoogle Scholar
  134. Raafat D, Von Bargen K, Haas A, Sahl HG (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74(12):3764–3773PubMedPubMedCentralCrossRefGoogle Scholar
  135. Ramesh A, Walker SA, Hood DB, Guillén MD, Schneider K, Weyand EH (2004) Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. Int J Toxicol 23(5):301–333PubMedCrossRefGoogle Scholar
  136. Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK (2019a) Endophytic fungi: biodiversity, ecological significance, and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi: Volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham, pp 1–62. Scholar
  137. Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. Scholar
  138. Rastegari AA, Yadav AN, Gupta A (2019) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, ChamCrossRefGoogle Scholar
  139. Ray K, Pfaff FF, Wang B, Nam W (2014) Status of reactive non-heme metal–oxygen intermediates in chemical and enzymatic reactions. J Am Chem Soc 136(40):13942–13958CrossRefGoogle Scholar
  140. Reddy CA (1995) The potential for white-rot fungi in the treatment of pollutants. Curr Opin Biotechnol 6(3):320–328CrossRefGoogle Scholar
  141. Rhodes CJ (2014) Mycoremediation (bioremediation with fungi) - growing mushrooms to clean the earth. Chem Speciat Bioavailab 26(3):196–198CrossRefGoogle Scholar
  142. Roberti R, Badiali F, Pisi A, Veronesi A, Pancaldi D, Cesari A (2006) Sensitivity of Clonostachys rosea and Trichoderma spp. as potential biocontrol agents to pesticides. J Phytopathol 154(2):100–109CrossRefGoogle Scholar
  143. Rodarte-Morales AI, Feijoo G, Moreira MT, Lema JM (2011) Degradation of selected pharmaceutical and personal care products (PPCPs) by white-rot fungi. World J Microbiol Biotechnol 27:1839–1846CrossRefGoogle Scholar
  144. Romero-Aguilar M, Tovar-Sánchez E, Sánchez-Salinas E, Mussali-Galante P, Sánchez-Meza JC, Castrejón-Godínez ML, Dantán-González E, Trujillo-Vera MÁ, Ortiz-Hernández ML (2014) Penicillium sp. as an organism that degrades endosulfan and reduces its genotoxic effects. Springer Plus 3(1):536PubMedCrossRefGoogle Scholar
  145. Roots O (2004) Polychlorinated biphenyls (PCB), polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) in oil shale and fly ash from oil shale-fired power plant in Estonia. Oil Shale 21(4):333–339Google Scholar
  146. Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR (2014) Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev 78(4):614–649PubMedPubMedCentralCrossRefGoogle Scholar
  147. Safe S (1993) Development of bioassays and approaches for the risk assessment of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin and related compounds. Environ Health Perspect 101(3):317PubMedPubMedCentralGoogle Scholar
  148. Saiu G, Tronci S, Grosso M, Cadoni E, Curreli N (2018) Pyrene and Chrysene tolerance and biodegradation capability of Pleurotus Sajor-Caju. Open Chem Eng J 12(1):24–35CrossRefGoogle Scholar
  149. Salo S, Verta M, Malve O, Korhonen M, Lehtoranta J, Kiviranta H, Isosaari P, Ruokojärv P, Koistinen J, Vartiainen T (2008) Contamination of River Kymijoki sediments with polychlorinated dibenzo-p-dioxins, dibenzofurans and mercury and their transport to the Gulf of Finland in the Baltic Sea. Chemosphere 73(10):1675–1683PubMedCrossRefGoogle Scholar
  150. Salvachúa D, Prieto A, Martínez ÁT, Martínez MJ (2013) Characterization of a novel dye-decolorizing peroxidase (DyP)-type enzyme from Irpex lacteus and its application in enzymatic hydrolysis of wheat straw. Appl Environ Microbiol 79(14):4316–4324PubMedPubMedCentralCrossRefGoogle Scholar
  151. Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295PubMedCrossRefGoogle Scholar
  152. Sankaran S, Khanal SK, Jasti N, Jin B, Pometto AL III, Van Leeuwen JH (2010) Use of filamentous fungi for wastewater treatment and production of high value fungal byproducts: a review. Crit Rev Environ Sci Technol 40(5):400–449CrossRefGoogle Scholar
  153. Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42(1):138–157CrossRefGoogle Scholar
  154. Sardrood BP, Goltapeh EM, Varma A (2013) An introduction to bioremediation. In: Fungi as bioremediators. Springer, Berlin/Heidelberg, pp 3–27CrossRefGoogle Scholar
  155. Schwarz W (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56(5–6):634–649PubMedCrossRefGoogle Scholar
  156. Schwarzenbach RP, Gschwend PM, Imboden DM (2016) Environmental organic chemistry. (pp. 945–974). John Wiley & Sons. Hoboken. New JeresyGoogle Scholar
  157. Seike N, Kashiwagi N, Otani T (2007) PCDD/F contamination over time in Japanese paddy soils. Environ Sci Technol 41(7):2210–2221PubMedCrossRefGoogle Scholar
  158. Seo JS, Keum YS, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6(1):278–309PubMedPubMedCentralCrossRefGoogle Scholar
  159. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26(3):246–265PubMedCrossRefGoogle Scholar
  160. Shawai SAA, Nahannu MS, Mukhtar HI, Idris A, Abdullahi II (2017) Assessment of heavy metals concentration in ground water from various locations of Gezawa Local Government Area of Kano State. Adv Mater 6(5):73–76CrossRefGoogle Scholar
  161. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci 103(32):12115–12120PubMedCrossRefGoogle Scholar
  162. Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer-Verlag, pp 117–143.
  163. Takada S, Nakamura M, Matsueda T, Kondo R, Sakai K (1996) Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624. Appl Environ Microbiol 62(12):4323–4328PubMedPubMedCentralGoogle Scholar
  164. Tian Y, Liu HJ, Zheng TL, Kwon KK, Kim SJ, Yan CL (2008) PAHs contamination and bacterial communities in mangrove surface sediments of the Jiulong River Estuary, China. Mar Pollut Bull 57(6–12):707–715PubMedCrossRefGoogle Scholar
  165. Tibbett M, Carter DO (2008) Soil analysis in forensic taphonomy: chemical and biological effects of buried human remains. CRC Press, Boca Raton/London/New York, pp 29–52Google Scholar
  166. Tijani JO, Fatoba OO, Petrik LF (2013) A review of pharmaceuticals and endocrine-disrupting compounds: sources, effects, removal, and detections. Water Air Soil Pollut 224(11):1770–1778CrossRefGoogle Scholar
  167. Tortella GR, Diez MC, Durán N (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31(4):197–212PubMedCrossRefGoogle Scholar
  168. Tsing A (2012) Unruly edges: mushrooms as companion species: for Donna Haraway. Environ Humanit 1(1):141–154CrossRefGoogle Scholar
  169. Turja R, Soirinsuo A, Budzinski H, Devier M-H, Lehtonen KK (2013) Biomarker responses and accumulation of hazardous substances in mussels (Mytilus trossulus) transplanted along a pollution gradient close to an oil terminal in the Gulf of Finland (Baltic Sea). Comp Biochem Physiol Part C Toxicol Pharmacol 157:80–92CrossRefGoogle Scholar
  170. Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64(3):271–293CrossRefGoogle Scholar
  171. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24(2):139–177PubMedCrossRefGoogle Scholar
  172. Várnai A, Siikaaho M, Viikari L (2010) Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzym Microb Technol 46(3–4):185–193CrossRefGoogle Scholar
  173. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11(3):235–250PubMedCrossRefGoogle Scholar
  174. Walker GM, White NA (2011) Introduction to fungal physiology. In: Fungi, Hoboken, pp 1–35Google Scholar
  175. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226CrossRefGoogle Scholar
  176. Wania F (2003) Assessing the potential of persistent organic chemicals for long-range transport and accumulation in Polar Regions. Environ Sci Technol 37(7):344–1351Google Scholar
  177. Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschein C, Watson CS, Zoeller RT, Belcher SM (2007) In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol 24(2):178–198PubMedCrossRefGoogle Scholar
  178. Winquist E, Björklöf K, Schultz E, Räsänen M, Salonen K, Anasonye F, Cajthaml T, Steffen T, Jørgensen KS, Tuomela M (2014) Bioremediation of PAH-contaminated soil with fungi–from laboratory to field scale. Int Biodeterior Biodegrad 86:238–247CrossRefGoogle Scholar
  179. Wittich RM (1998) Degradation of dioxin-like compounds by microorganisms. Appl Microbiol Biotechnol 49(5):489–499PubMedCrossRefPubMedCentralGoogle Scholar
  180. World Health Organization (2010) Persistent organic pollutants: impact on child health. WHO Press, World Health Organization, Geneva, pp 9–45Google Scholar
  181. Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198(1):97–107CrossRefGoogle Scholar
  182. Wu Y, Singh RP, Deng L (2011) Asymmetric olefin isomerization of butenolides via proton transfer catalysis by an organic molecule. J Am Chem Soc 133(32):12458–12461PubMedPubMedCentralCrossRefGoogle Scholar
  183. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20CrossRefGoogle Scholar
  184. Yadav AN (2019) Endophytic fungi for plant growth promotion and adaptation under abiotic stress conditions. Acta Sci Agric 3:91–93Google Scholar
  185. Yadav A, Verma P, Kumar R, Kumar V, Kumar K (2017) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22Google Scholar
  186. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the Genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. Scholar
  187. Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi Volume 1: diversity and enzymes perspectives. Springer International Publishing, ChamCrossRefGoogle Scholar
  188. Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer International Publishing, ChamCrossRefGoogle Scholar
  189. Ye L, Spiteller D, Ullrich R, Boland W, Nüske J, Diekert G (2010) Fluoride-dependent conversion of organic compounds mediated by manganese peroxidases in the absence of Mn2+ ions. Biochemist 49(34):7264–7271CrossRefGoogle Scholar
  190. Ying GG, Kookana RS (2005) Sorption and degradation of estrogen-like endocrine disrupting chemicals in soil. Environ Toxicol Chem 24(10):2640–2645PubMedCrossRefPubMedCentralGoogle Scholar
  191. Zeng GM, Chen AW, Chen GQ, Hu XJ, Guan S, Shang C, Lu LH, Zou ZJ (2012) Responses of Phanerochaete chrysosporium to toxic pollutants: physiological flux, oxidative stress, and detoxification. Environ Sci Technol 46(14):7818–7825PubMedCrossRefPubMedCentralGoogle Scholar
  192. Zhang C, Chen W, Alvarez PJ (2014) Manganese peroxidase degrades pristine but not surface-oxidized (carboxylated) single-walled carbon nanotubes. Environ Sci Technol 48(14):7918–7923PubMedCrossRefPubMedCentralGoogle Scholar
  193. Zhou X, Li W, Mabon R, Broadbelt LJ (2017) A critical review on hemicellulose pyrolysis. Energ Technol 5(1):52–79CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Prem Chandra
    • 1
  • Enespa
    • 2
  1. 1.Department of Environmental Microbiology, School for Environmental SciencesBabasaheb Bhimrao Ambedkar (A Central) UniversityLucknowIndia
  2. 2.Department of Plant Pathology, School of AgricultureMPDC, University of LucknowLucknowIndia

Personalised recommendations