Extracellular Fungal Peroxidases and Laccases for Waste Treatment: Recent Improvement

  • Shanmugapriya S. 
  • G. Manivannan
  • Selvakumar Gopal 
  • Sivakumar Natesan Email author
Part of the Fungal Biology book series (FUNGBIO)


Ecological monitoring and degradation of phenolics and lignin-based substances from the sludge released by the food, leather, and pharmaceutical industries have become more important in recent years. The use of physical and chemical methods produced excess sludge and recalcitrant chemicals which are not easily degradable. The use of microbial enzymes for the treatment of phenolics-based industrial pollutants has paying attention in recent years because of their ecofriendly nature and higher specificity and efficiency. Among the various enzymes used, fungal laccases and peroxidases (lignin peroxidase (LiP), manganese peroxidase (MnP), and versatile peroxidase (VP) are considered as green catalysts of huge biotechnological importance. Fungi are widely distributed microorganism maintaining saprophytic mode of life and excrete various extracellular enzyme including polyphenol oxidases, laccases, and peroxidases. It is present in various Ascomycetes, Basidiomycetes, Deuteromycetes, and lignin-degrading white-rot fungi. Laccases and peroxidases potentially decolorize and detoxify the industrial effluents containing azo dyes; phenolic, non-phenolic lignin-based compounds; and recalcitrant chemicals. Recently, several advancements in biotechnology used to improve the efficiency and stability of both laccases and peroxidases for various industrial effluent treatment processes. These enzymes simply detoxify the phenolic substances by simple electron transfer reactions. Hence, these enzymes have gained application in detoxification of various industrial effluents, in general paper and pulp, textile, and petrochemical industries, used to eliminate herbicides and pesticides and used as a tool in the design of biosensors. There are various methods such as enzyme nano-catalyst, immobilized enzyme reactors, and whole-cell immobilization that have been used. In this chapter, we summarize the fungal source of laccases and peroxidases, structure, mechanism of action, and environmental applications including industrial waste treatment, and detection and detoxification of pollutants.


Detoxification Laccases Lignin peroxidase Manganese peroxidase Phenols Polyphenols Versatile peroxidase 



The authors acknowledge to DST-PURSE Phase-II for providing computer facilities to prepare this review. There are no conflicts of interest.


  1. Abd El Monssef RA, Hassan EA, Ramadan EM (2016) Production of laccase enzyme for their potential application to decolorize fungal pigments on aging paper and parchment. Ann Agric Sci 61(1):145–154CrossRefGoogle Scholar
  2. Abdel-Hamid AM, Solbiati JO, Cann IK (2013) Insights into lignin degradation and its potential industrial applications. Adv Appl Microbiol 82:1–28PubMedCrossRefGoogle Scholar
  3. Acevedo F, Pizzul L, Castillo MD, Cuevas R, Diez MC (2011) Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. J Hazard Mater 185:212–219PubMedCrossRefGoogle Scholar
  4. Agrawal N, Verma P, Singh RS, Shah SK (2017) Ligninolytic enzyme production by white rot fungi Podoscypha elegans strain FTG4. Int J Curr Microbiol App Sci 6(5):2757–2764CrossRefGoogle Scholar
  5. Agrawal N, Verma P, Shahi SK (2018) Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump. Bioresour Bioprocess 5:11CrossRefGoogle Scholar
  6. Apriceno A, Bucci R, Girelli AM (2017) Immobilization of laccase from Trametes versicolor on chitosan macrobeads for anthracene degradation. Anal Lett 50(14):2308–2322CrossRefGoogle Scholar
  7. Arantes V, Jellison J, Goodell B (2012) Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol 94:323–338PubMedCrossRefGoogle Scholar
  8. Arroyo M (1998) Immobilization of enzymes. Fundamentals, methods and applications. Ars Pharm 39:23–39Google Scholar
  9. Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19:771–783PubMedCrossRefGoogle Scholar
  10. Balcázar-López E, Méndez-Lorenzo LH, Batista-García RA, Esquivel-Naranjo U, Ayala M, Kumar VV, Savary O, Cabana H, Herrera-Estrella A, Folch-Mallol JL (2016) Xenobiotic compounds degradation by heterologous expression of a Trametes sanguineus laccase in Trichoderma atroviride. PLoS One 11(2):e0147997. Scholar
  11. Baldrian P (2006) Fungal laccases-occurrence and properties. FEMS Microbiol Rev 30:215–242PubMedCrossRefPubMedCentralGoogle Scholar
  12. Balland V, Hureau C, Cusano A, Liu Y, Tron T, Limoges B (2008) Oriented immobilization of a fully active monolayer of Histidine-tagged recombinant laccase on modified gold electrodes. Chem Eur J 14:7186–7192PubMedPubMedCentralGoogle Scholar
  13. Banci L (1997) Structural properties of peroxidases. J Biotechnol 53(2–3):253–263PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bansal N, Kanwar S (2013) Peroxidase(s) in environment protection. Sci World J:714639, 9 pages.
  15. Bayoumi MN, Al-Wasify RS, Hamed SR (2014) Bioremediation of textile waste water dyes using local bacterial isolates. Int J Curr Microbiol Appl Sci 3(12):962–970Google Scholar
  16. Becker D, Rodriguez-Mozaz S, Insa S, Schoevaart R, Barceló D, de Cazes M, Belleville M-P, Sanchez-Marcano J, Misovic A, Oehlmann J, Wagner M (2017) Removal of endocrine disrupting chemicals in wastewater by enzymatic treatment with fungal laccases. Org Process Res Dev 21(4):480–491CrossRefGoogle Scholar
  17. Berrio J, Plou FJ, Ballesteros A, Martinez AT, Martinez MJ (2007) Immobilization of Pycnoporus coccineus laccase on Eupergit C:stabilization and treatment of olive oil mill waste waters. Biocatal Biotransformation 25:130–134CrossRefGoogle Scholar
  18. Bibi I, Bhatti HN (2012) Biodecolorization of reactive black 5 by laccase mediator system. Afr J Biotechnol 11:7464–7471Google Scholar
  19. Bosco F, Mollea C, Ruggeri B (2017) Decolorization of Congo Red by Phanerochaete chrysosporium: the role of biosorption and biodegradation. Environ Technol 38(20):2581–2588PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bourbonnais R, Paice MG (1990) Oxidation of nonphenolic substrates. An expended role for laccase in lignin biodegradation. FEBS Lett 267(1):99–102PubMedCrossRefGoogle Scholar
  21. Bourbonnais R, Paice MG (1992) Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Appl Microbiol Biotechnol 36:823–827CrossRefGoogle Scholar
  22. Bourbonnais R, Paice MG, Reid ID, Lanthier P, Yaguchi M (1995) Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,22- azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol 61(5):1876–1880PubMedPubMedCentralGoogle Scholar
  23. Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31:1639–1650PubMedCrossRefGoogle Scholar
  24. Brijwani K, Oberoi HS, Vadlani PV (2010) Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem 45(1):120–128CrossRefGoogle Scholar
  25. Burns RG, DeForest JL, Jürgen M, Sinsabaugh RL, Stromberger Mary E, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234CrossRefGoogle Scholar
  26. Camarero S, Sarkar S, Ruiz-Duenas FJ, Martinez MJ, Martinez AT (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem 274:10324–10330PubMedCrossRefGoogle Scholar
  27. Cantele C, Vilasboa J, Echer dos Reis E, Claudete Fontana R, Camassola M, Dillon A (2017) Synthetic dye decolorization by Marasmiellus palmivorus: simultaneous cultivation and high laccase-crude broth treatment. Biocatal Agric Biotechnol 12:314–322CrossRefGoogle Scholar
  28. Casas N, Blánquez P, Gabarrell X, Vicent T, Caminal G, Sarrà M (2010) Degradation of Orange G by laccase: fungal versus enzymatic process. Environ Technol 28(10):1103–1110CrossRefGoogle Scholar
  29. Castillo MdP (1997) Degradation of pesticides by Phanerochaete chrysosporium in solid substrate fermentation. ISSN 1401-6249, ISBN 91-576-5285-6Google Scholar
  30. Cavicchioli R, Charlton T, Ertan H, Omar SM, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cázares-García SV, Vázquez-Garcidueñas MS, Vázquez-Marrufo G (2013) Structural and phylogenetic analysis of laccases from Trichoderma: a bioinformatic approach. PLoS ONE 8(1):e55295Google Scholar
  32. Champagne P, Ramsay JA (2007) Reactive blue 19 decolouration by laccase immobilized on silica beads. Appl Microbiol Biotechnol 77:819–823PubMedCrossRefGoogle Scholar
  33. Champagne PP, Ramsay JA (2010) Dye decolorization and detoxification by laccase immobilized on porous glass beads. Bioresour Technol 101:2230–2235PubMedCrossRefGoogle Scholar
  34. Chander M, Kaur I (2015) An industrial dye decolourisation by Phlebia sp. Int J Curr Microbiol 4(5):217–226Google Scholar
  35. Chatterjee A, Singh N, Abraham J (2017) Mycoremediation of textile dyes using Talaromyces funiculosum. Int J Pharm Sci Res 8(5):2082–2089Google Scholar
  36. Chen L, Min Z, Feng FH (2015) Evaluation of fungal laccase immobilized on natural nanostructured bacterial cellulose. Front Microbiol 6:1245. Scholar
  37. Chhabra M, Mishra S, Sreekrishnan TR (2015) Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27. J Environ Health Sci Eng 13:38. Scholar
  38. Chivukula M, Renganathan V (1995) Phenolic Azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61:4374PubMedPubMedCentralGoogle Scholar
  39. Choinowski T, Blodig W, Winterhalter KH, Piontek K (1999) The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxy group on the Cβ of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol 286:809–872PubMedCrossRefGoogle Scholar
  40. Christian V, Shrivastava R, Shukla D, Modi HA, Vyas BRM (2005) Degradation of xenobiotic compounds by lignin-degrading white rrot fungi: enzymology and mechanism involved. Indian J Exp Biol 43(4):301–312PubMedGoogle Scholar
  41. Claus H (2004) Laccase: structure, reactions, distribution. Micron 35:93–96PubMedCrossRefGoogle Scholar
  42. Cohen S, Belinky PA, Hadar Y, Dosoretz CG (2009) Characterization of catechol derivative removal by lignin peroxidase in aqueous mixture. Bioresour Technol 100:2247–2253PubMedCrossRefGoogle Scholar
  43. Cordova DIC, Borges RM, Arizaga GGC, Wypych F, Krieger N (2009) Immobilization of laccase on hybrid layered double hydroxide. Quim Nova 32:1495–1499CrossRefGoogle Scholar
  44. Çorman ME, Ozturk N, Bereli N, Akgol S, Denizli A (2010) Preparation of nanoparticles which contains histidine for immobilization of Trametes versicolor laccase. J Molec Catal B 63:102–107CrossRefGoogle Scholar
  45. Costa S, Dedola DG, Pellizzari S, Blo R, Rugiero I, Pedrini P, Tamburin E (2017) Lignin biodegradation in pulp-and-paper mill wastewater by selected white rot fungi. Water 9:935CrossRefGoogle Scholar
  46. Crestini C, Perazzini R, Saladino R (2010) Oxidative functionalisation of lignin by layer-by layer immobilised laccases and laccase microcapsules. Appl Catal A 372:115–123CrossRefGoogle Scholar
  47. Cristovao RO, Tavares APM, Brígida AI, Loureiro JM, Boaventura RAR, Macedo EA, Coelho MAZ (2011) Immobilization of commercial laccase onto green coconut fiber by adsorption and its application for reactive textile dyes degradation. J Mol Catal B Enzym 72(1–2):6–12CrossRefGoogle Scholar
  48. da Silva BP, Gomes Correa RC, Kato CG, de Souza DF, Bracht A, Peralta RM (2017) Characterization of a solvent-tolerant manganese peroxidase from Pleurotus pulmonarius and its application in dye decolorization. Curr Biotechnol 6(4):318–324CrossRefGoogle Scholar
  49. Daassi D, Zouari-Mechichi H, Frikha F, Martinez MJ, Nasri M, Mechichi T (2013) Decolorization of the azo dye Acid Orange 51 by laccase produced in solid culture of a newly isolated Trametes trogii strain. Biotech 3(2):115–125Google Scholar
  50. Daassi D, Rodríguez-Couto S, Nasri M, Mechichi T (2014) Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads. Int Biodeterior Biodegradation 90:71–78CrossRefGoogle Scholar
  51. Dai Y, Niu J, Liu J, Yin L, Xu J (2010) In situ encapsulation of laccase in microfibers by emulsion electrospinning: preparation, characterization, and application. Bioresour Technol 101:8942–8947PubMedCrossRefGoogle Scholar
  52. Das A, Bhattacharya S, Panchanan G, Navya BS, Nambiar P (2016) Production, characterization and Congo red dye decolourizing efficiency of a laccase from Pleurotus ostreatus MTCC 142 cultivated on co-substrates of paddy straw and corn husk. J Genet Eng Biotechnol 14:281–288PubMedPubMedCentralCrossRefGoogle Scholar
  53. Dayaram P, Dasgupta D (2008) Decolorisation of synthetic dyes and textile wastewater using Polyporus rubidus. J Environ Biol 29:831–836PubMedGoogle Scholar
  54. Decker H, Terwilliger N (2000) Cops and robbers: putative evolution of copper oxygen-binding proteins. J Exp Bio 203:1777–1782Google Scholar
  55. Del Pilar Castillo M, Von Wirén-Lehr S, Scheunert I, Torstensson L (2001) Degradation of isoproturon by the white rot fungus Phanerochaete chrysosporium. Biol Fertil Soils 33(6):521–528CrossRefGoogle Scholar
  56. Dhillon GS, Kaur S, Brar SK (2012) In vitro decolorization of recalcitrant dyes through an ecofriendly approach using laccase from Trametes versicolor grown on brewer’s spent grain. Int Biodeterior Biodegradation 72:67–75CrossRefGoogle Scholar
  57. Dick GJ, Podell S, Johnson HA, Rivera-Espinoza Y, Bernier-Latmani R (2008) Genomic insights into Mn (II) oxidation by the marine alpha proteobacterium Aurantimonas sp. strain SI85-9A1. Appl Environ Microbiol 74:2646–2658PubMedPubMedCentralCrossRefGoogle Scholar
  58. Enguita JF, Martins OL, Henriques OA, Carrondo AM (2003) Crystal structure of a bacterial endospore coat component. J Biol Chem 278:19416–19425PubMedCrossRefGoogle Scholar
  59. Erden E, Ucar CM, Gezer T, Pazarlioglu NK (2009) Screening for ligninolytic enzymes from autochthonous fungi and applications for decolorization of Remazole Marine Blue. Braz J Microbiol 40(2):346–353PubMedPubMedCentralCrossRefGoogle Scholar
  60. Ezeronye OU, Okerentugba PO (1999) Performance and efficiency of a yeast biofilter for the treatment of a nigerian fertilizer plant effluent. World J Microbiol Biotechnol 15:515–516CrossRefGoogle Scholar
  61. Fang H, Huang J, Ding L, Li M, Chen Z (2009) Preparation of magnetic chitosan nanoparticles and immobilization of laccase. J Wuhan Univ Technol Mater Sci Ed 24:42–47CrossRefGoogle Scholar
  62. Ferapontova EE, Castello J, Gorton L (2006) Bioelectrocatalytic properties of lignin peroxidase from Phanerochaete chrysosporium in reactions with phenols, catechols and lignin model compounds. Biochim Biophys Acta 1760:1343–1354PubMedCrossRefGoogle Scholar
  63. Fernandes SC, de Oliveira IRWZ, Fatibello-Filho O, Spinelli A, Vieira IC (2008) Biosensor based on laccase immobilized on microspheres of chitosan crosslinked with tripolyphosphate. Sens Actuators B Chem 133:202–207CrossRefGoogle Scholar
  64. Ferry Y, Leech D (2005) Amperometric detection of catecholamine neurotransmitters using electrocatalytic substrate recycling at a laccase electrode. Electroanalysis 17:2113–2119CrossRefGoogle Scholar
  65. Forde J, Tully E, Vakurov A, Gibson TD, Millner P, Ofagain C (2010) Chemical modification and immobilisation of laccase from Trametes hirsuta and from Myceliophthora thermophila. Enzym Microb Technol 46:430–437CrossRefGoogle Scholar
  66. Gadd GM (2001) Accumulation and transformation of metals by microorganisms. In: Rehm H-J, Reed G, Puhler A, Stadler P (eds) Biotechnology, A multi-volume comprehensive treatise. Volume 10: Special processes. Wiley-VCH Verlag, Weinheim, pp 225–264Google Scholar
  67. Galhaup C, Haltrich D (2001) Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl Microbiol Biotechnol 56:225–232PubMedCrossRefGoogle Scholar
  68. Galkin S, Vares T, Kalsi M, Hatakka A (1998) Production of organic acids by different white-rot fungi as detected using capillary zone electrophoresis. Biotechnol Tech 12(4):267–271CrossRefGoogle Scholar
  69. Garavaglia S, Cambria MT, Miglio M, Ragusa S, Iacobazzi V, Palmieri F, D’Ambrosio C, Scaloni A, Rizzi M (2004) The structure of Rigidoporus lignosus laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. J Mol Biol 342:1519–1531PubMedCrossRefGoogle Scholar
  70. Gavnholt B, Larsen K, Rasmussen SK (2002) Isolation and characterization of laccase cDNAs from meristematic and stem tissues of ryegrass (Lolium perenne). Plant Sci 162:873–885CrossRefGoogle Scholar
  71. Ghasemi F, Tabandeh F, Bambai B, Sambasiva Rao KRS (2010) Decolorization of different azo dyes by Phanerochaete chrysosporium. Int J Environ Sci Technol 7(3):457–464CrossRefGoogle Scholar
  72. Girard V, Dieryckx C, Job C, Job D (2013) Secretomes: the fungal strike force. Proteomics 13:597–608PubMedCrossRefGoogle Scholar
  73. Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin degrading basidiomycetes, Phanerochaete chrysosporium. Arch Biochem Biophys 242(2):329–341CrossRefGoogle Scholar
  74. Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, Gold MH (1983) An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 114(3):1077–1083PubMedCrossRefGoogle Scholar
  75. Gnanamania A, Jayaprakashvel M, Arulmani M, Sadulla S (2006) Effect of inducers and culturing processes on laccase synthesis in Phanerochaete chrysosporium NCIM 1197 and the constitutive expression of laccase isozymes. Enzym Microb Technol 38:1017–1021CrossRefGoogle Scholar
  76. Gochev VK, Krastanov AI (2007) Isolation of laccase producing Trichoderma sp. Bulgarian J Agric Sci 13:171–176Google Scholar
  77. Goh SM, Chan MY, Ong LGA (2017) Degradation potential of basidiomycetes Trametes ljubarskyi on Reactive Violet 5 (RV 5) using urea as optimum nitrogen source. Biotechnol Biotechnol Equip 31(4):743–748Google Scholar
  78. Gold MH, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57:605–622PubMedPubMedCentralGoogle Scholar
  79. Gomez-Toribio V, Martinez AT, Martinez MJ, Guillen F (2001) Oxidation of hydroquinones by the versatile ligninolytic peroxidase from Pleurotus eryngii. H2O2 generation and the influence of Mn2+. Eur J Biochem 268:4787–4793PubMedCrossRefGoogle Scholar
  80. Govarthanan M, Fuzisawa S, Hosogaia T, Chang YC (2017) Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp. CHY-2 and characterization of its manganese peroxidase activity. RSC Adv 34(7):20716–20723CrossRefGoogle Scholar
  81. Günther T, Sack U, Hofrichter M, Lätz M (1998) Oxidation of PAH and PAH-derivatives by fungal and plant oxidoreductases. J Basic Microbiol 38(2):113–122CrossRefGoogle Scholar
  82. Hadibarata T, Yusoff ARM, Aris A, Hidayat T, Kristanti RA (2012) Decolorization of azo, triphenylmethane and anthraquinone dyes by laccase of a newly isolated Armillaria sp. F022. Water Air Soil Pollut 223:1045–1054CrossRefGoogle Scholar
  83. Haglund C (1999). Biodegradation of xenobiotic compounds by the white-rot fungus Trametes trogii. In. Molecular Biotechnology Programme, Uppsala University School of Engineering 30 pGoogle Scholar
  84. Hakala N (2011) Decolorization of ink jet ink and deinking of ink jet printed paper with laccase mediator system. Bioresources 6:1336–1350Google Scholar
  85. Hamid F, Shahla R, Hamed Z-L, Hamed T, Mehdi M, Alieh A, Mohammad F (2016) Studies on the laccase-mediated decolorization, kinetic, and microtoxicity of some synthetic azo dyes. J Environ Health Sci Eng 14:7. Scholar
  86. Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11(3):349–355PubMedCrossRefGoogle Scholar
  87. Hao OJ, Kim H, Chiang PC (2000) Decolorization of wastewater. Crit Rev Environ Sci Technol 30:449–505CrossRefGoogle Scholar
  88. He F, Hu W, Li Y (2004) Biodegradation mechanisms and kinetics of azo dye 4BS by a microbial consortium. Chemosphere 57:293–301PubMedCrossRefGoogle Scholar
  89. Heinfling A, Martinez MJ, Martinez AT, Bergbauer M, Szewzyk U (1998) Transfor-mation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64:2788PubMedPubMedCentralGoogle Scholar
  90. Higuchi T (2004) Microbial degradation of lignin: role of lignin peroxidase, manganese peroxidase, and laccase. Proceedings of the Japan Academy, Series B 80(5):204–214CrossRefGoogle Scholar
  91. Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30:454–466CrossRefGoogle Scholar
  92. Humnabadkar RP, Saratale GD, Govindwar SP (2008) Decolorization of purple 2R by Aspergillus ochraceus (NCIM-1146). Asian J Microbiol Biotechnol Environ Sci 10:693–697Google Scholar
  93. Ibrahim NA, Gouda M, El-Shafei AM, Abdel-Fatah OM (2007) Antimicrobial activity of cotton fabrics containing immobilized enzymes. J Appl Polym Sci 104:1754–1761CrossRefGoogle Scholar
  94. Ihssen J, Reiss R, Luchsinger R, Meyer LT, Richter M (2015) Biochemical properties and yields of diverse bacterial laccase like multicopper oxidases expressed in Escherichia coli. Sci Rep:5.
  95. Iyer G, Chattoo BB (2003) Purification and characterization of laccase from the rice blast fungus, Magnaporthe grisea. FEMS Microbiol Lett 227(1):121–126PubMedCrossRefGoogle Scholar
  96. Iyer PB, Atchaya B, Sujatha K, Rajmohan K (2016) Comparison of synthetic dyes decolourisation by Ganoderma sp. using immobilized enzyme. J Environ Biol 37:1507–1514Google Scholar
  97. Jaafar A, Musa A, Lee YH, Nadarajah K, Hamidah S (2006) Stacked films immobilization of MBTH in nafion/sol-gel silicate and horseradish peroxidase in chitosan for the determination of phenolic compounds. Anal Bioanal Chem 386:1285–1292CrossRefGoogle Scholar
  98. Janusz G, Kucharzyk KH, Pawlik A, Staszczak M, Paszczynski AJ (2013) Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzym Microb Technol 52:1–12CrossRefGoogle Scholar
  99. Jarosz-Wilkołazka A, Ruzgas T, Gorton L (2004) Use of laccase-modified electrode for amperometric detection of plant flavonoids. Enzym Microb Technol 35:238–241CrossRefGoogle Scholar
  100. Jones SM, Solomon EI (2015) Electron transfer and reaction mechanism of laccases. Cell Mol Life Sci 72:869–883PubMedPubMedCentralCrossRefGoogle Scholar
  101. Kalme S, Jadhav S, Jadhav M, Govindwar S (2009) Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112. Enzym Microb Technol 44:65–71CrossRefGoogle Scholar
  102. Kalra K, Chauhan R, Shavez M, Sachdeva S (2013) Isolation of laccase producing Trichoderma spp. and effect of pH and temperature on its activity. Int J ChemTech Res 5(5):2229–2235Google Scholar
  103. Kalyani DC, Patil PS, Jadhav JP, Govindwar SP (2008) Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresour Technol 99:4635–4641PubMedCrossRefGoogle Scholar
  104. Kapich AN, Prior BA, Botha A, Galkin S, Lundell T, Hatakka A (2004) Effect of lignocellulose-containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME-446. Enzym Microb Technol 34:187–195CrossRefGoogle Scholar
  105. Karam J, Nicell JA (1997) Potential applications of enzymes in waste treatment. J Chem Technol Biotechnol 69:141–153CrossRefGoogle Scholar
  106. Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res:805187Google Scholar
  107. Karimi S, Abdulkhani A, Karimi A, Ghazali AHB, Ahmadun FL-R (2010) The effect of combination enzymatic and advanced oxidation process treatments on the colour of pulp and paper mill effluent. Environ Technol 31(4):347–356PubMedCrossRefGoogle Scholar
  108. Kariminia HR, Sakurai A, Sakakibara M (2007) Decolorization of synthetic dyes by a new manganese peroxidase-producing white rot fungus. Dyes Pigments 72(2):157–162CrossRefGoogle Scholar
  109. Keum YS, Li QX (2004) Fungal laccase-catalyzed degradation of hydroxyl polychlorinated biphenyls. Chemosphere 56:23–30PubMedCrossRefGoogle Scholar
  110. Kiiskinen LL, Viikari L, Kruus K (2002) Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces. Appl Microbiol Biotechnol 59(2–3):198–204PubMedGoogle Scholar
  111. Kim Y, Cho NS, Eom TJ, Shin W (2002) Purification and characterization of a laccase from Cerrena unicolor and its reactivity in lignin degradation. Bull Kor Chem Soc 23(7):985–989CrossRefGoogle Scholar
  112. Kimura Y, Asada Y, Kuwahara M (1990) Screening of basidiomycetes for lignin peroxidase genes using a DNA probe. Appl Microbiol Biotechnol 32:436–442PubMedCrossRefGoogle Scholar
  113. Kinnunen A, Maijala P, Järvinen P, Hatakka A (2016) Improved efficiency in screening for lignin-modifying peroxidases and laccases of basidiomycetes. Curr Biotechnol 6:105–115CrossRefGoogle Scholar
  114. Kinnunen A, Maijala P, JArvinen P, Hatakka A (2017) Improved efficiency in screening for lignin-modifying peroxidases and laccases of basidiomycetes. Curr Biotechnol 6:105–115CrossRefGoogle Scholar
  115. Kishi K, Wariishi H, Marquez L, Dunford BH, Gold MH (1994) Mechanisms of manganese peroxidases compound II reduction. Effect of organic acid chelators and pH. Biochemist 33(29):8694–8701CrossRefGoogle Scholar
  116. Kjalke M, Morten BA, Palle S, Bjørn C, Martin S, Kaen GW (1992) Comparison of structure and activities of peroxidases from Coprinus cinereus, Coprinus macrorhizus and Arthromyces ramosus. Biochim Biophys Acta 1120(3):248–256PubMedCrossRefPubMedCentralGoogle Scholar
  117. Kong W, Fu X, Wang L, Alhujaily A, Zhang J, Ma F, Yu H (2017) A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. Biotechnol Biofuels 10:218PubMedPubMedCentralCrossRefGoogle Scholar
  118. Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for value-added products and environments, vol 2. Springer, Cham, pp 1–64. Scholar
  119. Kumar SV, Phale PS, Durani S, Wangikar PP (2003) Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng 83:386–394PubMedCrossRefGoogle Scholar
  120. Kumar R, Kaur J, Kumar A (2016) Optmization of laccase production from Aspergillus flavus by design of experiment technique: partial purification and characterization. J Gen Eng Biotechnol 14(1):125–131CrossRefGoogle Scholar
  121. Kunishima N, Fukuyama K, Matsubara H, Hatanaka H, Shibano Y, Amachi T (1994) Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1.9 A resolution. structural comparisons with the lignin and cytochrome c peroxidases. J Mol Biol 235(1):331–344PubMedCrossRefGoogle Scholar
  122. Lang M, Kanost MR, Gorman MJ (2012) Multicopper oxidase-3 is a laccase associated with the peritrophic matrix of Anopheles gambiae. PLoS One 7:33985CrossRefGoogle Scholar
  123. Laufer Z, Beckett RP, Minibayeva FV, Luthje S, Bottger M (2009) Diversity of laccases from lichens in suborder Peltigerineae. Bryologist 112(2):418–426CrossRefGoogle Scholar
  124. Leite OD, Lupetti KO, Fatibello-Filho O, Vieira IC, de Barbosa AM (2003) Synergic effect studies of the bi-enzymatic system laccase peroxidase in a voltammetric biosensor for catecholamines. Talanta 59:889–896PubMedCrossRefGoogle Scholar
  125. Leonowicz A, Gianfreda L, Rogalski J, Jaszek M, Luterek J, Wojtas-Wasilewska M, Malarczyk E, Dawidowicz A, Fink-Boots M, Ginalska G, Staszczak M, Cho NS (1997) Appearance of laccase in wood-rotting fungi and its inducibility. Mokchae Konghak 25:29–36Google Scholar
  126. Levasseur A, Saloheimo M, Navarro D et al (2010) Exploring laccase-like multicopper oxidase genes from the ascomycete Trichoderma reesei: a functional, phylogenetic and evolutionary study. BMC Biochem 11:32. Scholar
  127. Li D, Li N, Ma B, MayWeld MB, Gold MH (1999) Characterization of genes encoding two manganese peroxidases from the lignin degrading fungus Dichomitus squalens. Biochim Biophys Acta 1434:356–364PubMedCrossRefPubMedCentralGoogle Scholar
  128. Li X, Lin X, Zhang J, Wu Y, Yin R, Feng Y, Wang Y (2010) Degradation of polycyclic aromatic hydrocarbons by crude extracts from spent mushroom substrate and its possible mechanisms. Curr Microbiol 60:336–342PubMedCrossRefGoogle Scholar
  129. Li Q, Wang X, Korzhev M, Schröder HC, Link T, Tahir MN (2015a) Potential biological role of laccase from the sponge Suberites domuncula as an antibacterial defense component. Biochim Biophys Acta 1850:118–128PubMedCrossRefGoogle Scholar
  130. Li W-X, Sun H-Y, Zhang R-F (2015b) Immobilization of laccase on a novel ZnO/SiO2 nano-composited support for dye decolorization. IOP Conference Series: Materials Science and Engineering, Vol 87Google Scholar
  131. Limongi P, Kjalke M, Vind J, Tams J, Johansson T, Welinder KG (1995) Disulfide bonds and glycosylation in fungal peroxidases. Eur J Biochem 227:270–276PubMedCrossRefPubMedCentralGoogle Scholar
  132. Liu Y, Guo C, Wang F, Liu C, Liu H (2008) Preparation of magnetic silica nanoparticles and their application in laccase immobilization. Guocheng Gongcheng Xuebao/Chin J Process Eng 8:583–588Google Scholar
  133. Liu Y, Zeng Z, Zeng G, Tang L, Pang Y, Li Z, Liu C, Lei X, Wu M, Ren P, Liu Z, Chen M, Xie G (2012) Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresour Technol 115:21–26PubMedCrossRefPubMedCentralGoogle Scholar
  134. Lu L, Zhao M, Wang Y (2007) Immobilization of laccase by alginate–chitosan microcapsules and its use in dye decolorization. World J Microbiol Biotechnol 23:159–166CrossRefGoogle Scholar
  135. Luna-Acosta A, Rosenfeld E, Amari M, Fruitier-Arnaudin BP, Thomas-Guyon H (2010) First evidence of laccase activity in the Pacific oyster Crassostrea gigas. Fish Shellfish Immunol 28:719–726PubMedCrossRefPubMedCentralGoogle Scholar
  136. Madhavi V, Lele SS (2009) Laccase: properties and application. Bio Resources 4:1694–1717Google Scholar
  137. Majeau JA, Brar SK, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 101:2331–2350PubMedCrossRefPubMedCentralGoogle Scholar
  138. Mäkelä M, Galkin S, Hatakka A, Lundell T (2002) Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzym Microb Technol 30(4):542–549CrossRefGoogle Scholar
  139. Manavalan T, Manavalan A, Heese K (2015) Characterization of lignocellulolytic enzymes from white-rot fungi. Curr Microbiol 70:485–498PubMedCrossRefPubMedCentralGoogle Scholar
  140. Marques de Souza CG, Zilly A, Peralta RM (2002) Production of laccase as the sole phenoloxidase by a Brazilian strain of Pleurotus pulmonarius in solid state fermentation. J Basic Microbiol 42:83–90PubMedCrossRefPubMedCentralGoogle Scholar
  141. Martinez AT, Camarero S, Guillen F, Gutierrez A, Munoz C, Varela E, Martinez MJ, Barrasa JM, Ruel K, Pelayo JM (1994) Progress in biopulping of non-woody materials: chemical, enzymatic and ultrastructural aspects of wheat straw delignification with ligninolytic fungi from the genus. Pleurotus. FEMS Microbiol Rev 13:265–274CrossRefGoogle Scholar
  142. Martinez MJ, Böckle B, Camarero S, Guillén F, Martinez AT (1996). MnP isoenzymes produced by two Pleurotus species in liquid culture and during wheat-straw solid-state fermentation. Enzymes for Pulp and Paper Processing, Chapter 14, pp 83–196Google Scholar
  143. Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, Del Rio JC (2005) Biodegradation of lignocellulosics: microbial, chemical and enzymatic aspects of fungal attack to lignin. Int Microbiol 8(3):195–204PubMedPubMedCentralGoogle Scholar
  144. Matera I, Gullotto A, Tilli S, Ferraroni M, Scozzafava A, Briganti F (2008) Crystal structure of the blue multicopper oxidase from the white-rot fungus Trametes trogii complexed with p-toluate. Inorg Chim Acta 361:4129–4137CrossRefGoogle Scholar
  145. Matijosyte I, Arends IWCE, de Vries S, Sheldon RA (2010) Preparation and use of cross-linked enzyme aggregates (CLEAs) of laccases. J Mol Catal B Enzym 62:142–148CrossRefGoogle Scholar
  146. Mayer AM, Harel E (1979) Polyphenol oxidases in plants. Phytochemistry 18:193–215CrossRefGoogle Scholar
  147. Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565PubMedCrossRefPubMedCentralGoogle Scholar
  148. Mazlan SZ, Hanifah SA (2017) Effects of temperature and pH on immobilized laccase activity in conjugated methacrylate-acrylate microspheres. Int J Polym Sci:565727Google Scholar
  149. Mazlan SZ, Lee YH, Hanifah SA (2017) A new laccase based biosensor for tartrazine. Sensors 17(12):2859Google Scholar
  150. Melo CF, Silva LA, Costaa LC, Marquesa MRC (2017) Synergistic effect of adsorption and enzymatic conversion in the bisphenol-a removal by laccase immobilized on poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate). J Brazil Chem Soc 28(11):2192–2201Google Scholar
  151. Michałowicz J, Duda W (2007) Phenols transformations in the environment and living organisms. Cur Topics Biophy (Sup A) 30:24–36Google Scholar
  152. Min KL, Kim YH, Kim YW, Jung HS, Hah YC (2001) Characterization of a novel laccase produced by the wood rotting fungus Phellinus ribis. Arch Biochem Biophys 392:279–286PubMedCrossRefPubMedCentralGoogle Scholar
  153. Minussi RC, Miranda MA, Silva JA (2007) Purification, characterization and application of laccase from Trametes versicolor for colour and phenolic removal of olive mill wastewater in the presence of 1-hydroxybenzotriazole. Afr J Biotechnol 6(10):1248–1254Google Scholar
  154. Mirzadeh S-S, Khezri S-M, Faramarzi MA (2014) Decolourization of two synthetic dyes using the purified laccase of Paraconiothyrium variabile immobilized on porous silica beads. J Environ Health Sci Eng 12(6):1–19Google Scholar
  155. Moreira PR, Almeida-Vara E, Malcata FX, Duarte JC (2007) Lignin transformation by a versatile peroxidase from a novel Bjerkandera sp. strain. Int Biodeterior Biodegradation 59:234–238CrossRefGoogle Scholar
  156. Moreno LF, Feng P, Weiss VA, Vicente VA, Stielow JB, de Hoog S (2017) Phylogenomic analyses reveal the diversity of laccase-coding genes in Fonsecaea genomes. PLoS One 12(2):e0171291PubMedPubMedCentralCrossRefGoogle Scholar
  157. Mougin C, Laugero C, Asther M, Dubroca J, Frasse P, Asther M (1994) Biotransformation of the herbicide atrazine by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 60:705–708PubMedPubMedCentralGoogle Scholar
  158. Mugdha A, Usha M (2012) Enzymatic treatment of wastewater containing dyestuffs using different delivery systems. Sci Rev Chem Commun 2(1):31–40Google Scholar
  159. Munteanu FD, Lindgren A, Emneus J, Gorton L, Ruzgas T, Csoregi E, Ciucu A, van Huystee RB, Gazaryan IG, Lagrimini LM (1998) Bioelectrochemical monitoring of phenols and aromatic amines in flow injection using novel plant peroxidases. Anal Chem 70:2596–2600PubMedCrossRefPubMedCentralGoogle Scholar
  160. Murugesan K, Nam IH, Kim YM, Chang YS (2007) Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. Enzym Microb Technol 40:1662–1672CrossRefGoogle Scholar
  161. Murugesan K, Kim M, Jeon R, Chang S (2009) Effect of metal ions on reactive dye decolorization by laccases from Ganoderma lucidum. J Hazard Mater 168:523–529PubMedCrossRefPubMedCentralGoogle Scholar
  162. Nghi DH, Bittner B, Kellner H (2012) The Wood Rot Ascomycete Xylaria polymorpha produces a novel GH78 glycoside hydrolase that exhibits L-Rhamnosidase and feruloyl esterase activities and releases hydroxycinnamic acids from lignocelluloses. Appl Environ Microbiol 78(14):4893PubMedCentralCrossRefGoogle Scholar
  163. Nicell JA (1994) Kinetics of horseradish peroxidase-catalyzed polymerization and precipitation of aqueous 4-Chlorophenol. J Chem Technol Biotechnol 60:203–215CrossRefGoogle Scholar
  164. Niku-Paavola ML, Fagerstrom R, Kruus K, Viikari L (2004) Thermostable laccase from the white-rot fungus Peniophora sp. Enzym Microb Technol 35:100–102CrossRefGoogle Scholar
  165. Niladevi KN (2009) Ligninolytic enzymes. In: Nigam PS, Pandey A (eds) Biotechnology for agro-industrial residues utilisation: utilisation of agro-residues. Springer, Netherlands, pp 397–414Google Scholar
  166. Niladevi KN, Prema P (2008) Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor. World J Microbiol Biotechnol 24:1215–1222CrossRefGoogle Scholar
  167. O’Malley MD, Ross W, Wuli B, Chen-Loung C, Ronald S (1993) The role of laccase in lignification. Plant J 4:751–757CrossRefGoogle Scholar
  168. Oktem AH, Ozge S, Fusun E, Ceren B, Remziye Y (2012) Development of a laccase based paper biosensor for the detection of phenolic compounds. J Food Agric Environ 10(2):1030–1034Google Scholar
  169. Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2007) Banana skin: a novel waste for laccase production by Trametes pubescens under solid-state conditions. Application to synthetic dye decolouration. Dyes Pigments 75:32–37CrossRefGoogle Scholar
  170. Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2011) Cost analysis in laccase production. J Environ Manag 92:2907–2912CrossRefGoogle Scholar
  171. Paice MG, Reid ID, Bourbonnais R, Archibald FS, Jurasek L (1993) Manganese Peroxidase, Produced by Trametes versicolor during Pulp Bleaching, Demethylates and Delignifies Kraft Pulp. Appl Environ Microbiol 59(1):260–265PubMedPubMedCentralGoogle Scholar
  172. Pallerla S, Chambers RP (1998) Reactor development for biodegradation of pentachlorophenol. Catal Today 40:103–111CrossRefGoogle Scholar
  173. Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G (1997) A novel white laccase from Pleurotus ostreatus. J Biol Chem 272:31301–31307PubMedCrossRefGoogle Scholar
  174. Pandey VK, Singh MP, Srivastava AK, Vishwakarma SK, Takshak S (2012) Biodegradation of sugarcane bagasse by white rot fungus Pleurotus citrinopileatus. Cell Mol Biol 58(1):8–14PubMedPubMedCentralGoogle Scholar
  175. Pandey VP, Awasthi M, Singh S, Tiwari S, Dwivedi UN (2017) A comprehensive review on function and application of plant peroxidases. Biochem Anal Biochem 6:308. Scholar
  176. Pang S, Wu Y, Zhang X, Li B, Ouyang J, Ding M (2016) Immobilization of laccase via adsorption onto bimodal mesoporous Zr-MOF. Process Biochem 51(2):229–239CrossRefGoogle Scholar
  177. Pant D, Adholeya A (2007) Enhanced production of ligninolytic enzymes and decolorization of molasses distillery wastewater by fungi under solid state fermentation. Biodegradation 18:647–659PubMedCrossRefGoogle Scholar
  178. Park C, Lee M, Lee B, Kim SW, Chase HA, Lee J (2007) Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii. Biochem Eng J 36:59–65CrossRefGoogle Scholar
  179. Passardi F, Theiler G, Zamocky M, Cosio C, Rouhier N (2007a) PeroxiBase: the peroxidase database. Phytochemistry 68:1605–1611PubMedCrossRefGoogle Scholar
  180. Passardi F, Zamocky M, Favet J, Jakopitsch C, Penel C (2007b) Phylogenetic distribution of catalase-peroxidases: are these patches of order in chaos? Gene 397:101–113PubMedCrossRefGoogle Scholar
  181. Pelaez F, Martinez MJ, Martinez AT (1995) Screening of 68 species of basidiomycetes for enzymes involved in lignin degradation. Mycol Res 99:37–42CrossRefGoogle Scholar
  182. Pérez-Boada M, Ruiz-Dueñas FJ, Pogni R, Basosi R, Choinowski T, Martínez MJ, Piontek K, Martínez AT (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigations of three long-range electron transfer pathways. J Mol Biol 354:385–402PubMedCrossRefGoogle Scholar
  183. Phetsom J, Khammuang S, Suwannawong P, Sarnthima R (2009) Copper–alginate encapsulation of crude laccase from Lentinus polychrous Lev. and their effectiveness in synthetic dyes decolorizations. J Biol Sci 9:573–583CrossRefGoogle Scholar
  184. Piontek K, Smith AT, Blodig W (2001) Lignin peroxidase structure and function. Biochem Soc Trans 29(2):111–116PubMedCrossRefGoogle Scholar
  185. Pizzul L, Castillo MDP, Stenström J (2009) Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation 20(6):751–759PubMedCrossRefGoogle Scholar
  186. Poulos TL, Edwards SL, Wariishi H, Gol MH (1993) Crystallographic refinement of lignin peroxidase at 2 Å. J Biol Chem 268:4429–4440PubMedGoogle Scholar
  187. Pozdnyakova NN, Turkovskaya OV, Yudina EN, Rodakiewicz-Nowak Y (2006) Yellow laccase from the fungus Pleurotus ostreatus D1: purification and characterization. Appl Biochem Microbiol 42(1):56–61CrossRefGoogle Scholar
  188. Priyanka G, Uma G (2017) Statistical optimization of laccase production by Aspergillus flavus PUF5 through submerged fermentation using agro-waste as cheap substrate. Acta Biol Szeged 61(1):25–33Google Scholar
  189. Qiu L, Huang Z (2010) The treatment of chlorophenols with laccase immobilized on sol–gel derived silica. World J Microbiol Biotechnol 26:775–781CrossRefGoogle Scholar
  190. Rahman MA, Noh HB, Shim YB (2008) Direct electrochemistry of laccase immobilized on au nanoparticles encapsulated dendrimer bonded conducting polymer: application for a catechin sensor. Anal Chem 80:8020–8027PubMedCrossRefGoogle Scholar
  191. Rani V, Mohanram S, Tiwari R, Nain L, Arora A (2014) Beta glucosidase: key enzyme in determining efficiency of cellulase and biomass hydrolysis. J Bioproces Biotechniq 5:197Google Scholar
  192. Ranocha P, McDougall G, Hawkins S, Sterjiades R, Borderies G, Stewart D, Cabanes-Macheteau M, Boudet AM, Goffner D (1999) Biochemical characterization, molecular cloning and expression of laccases-a divergent gene family in poplar. Eur J Biochem 259:485–495PubMedCrossRefGoogle Scholar
  193. Rastegari AA, Yadav AN, Gupta A (2019) Prospects of renewable bioprocessing in future energy systems. Springer, ChamCrossRefGoogle Scholar
  194. Reyes P, Pickard MA, Vazquez-Duhalt R (1999) Hydroxybenzotriazole increases the range of textile dyes decolorized by immobilized laccase. Biotechnol Lett 21:875–880CrossRefGoogle Scholar
  195. Robles A, Lucas R, Martinez-Canamero M, Omar NB, Perez R, Galvez A (2002) Characterization of laccase activity produced by Hyphomycetes Chalara (syn. Thielaviopsis) paradoxa CH 32. Enzyme Microb Technol 31:516CrossRefGoogle Scholar
  196. Rochefort D, Kouisni L, Gendron K (2008) Physical immobilization of laccase on an electrode by means of poly(ethyleneimine) microcapsules. J Electroanal Chem 617:53–63CrossRefGoogle Scholar
  197. Rodríguez Couto S, Toca Herrera JL (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513PubMedCrossRefGoogle Scholar
  198. Rodriguez Couto S, Rosales E, Gundin M, Sanroman MA (2004) Exploitation of a waste from the brewing industry for laccase production by two Trametes species. J Food Eng 64:423–428CrossRefGoogle Scholar
  199. Rodríguez Couto S, Rodríguez A, Paterson RRM, Lima N, Teixeira JA (2006) Laccase activity from the fungus Trametes hirsuta using an air‐lift bioreactor. Letters in Appl Microbiol 42(6):612–616Google Scholar
  200. Rodriguez E, Pickard MA, Vazquez-Duhalt R (1999) Industrial dye decolorization by laccases from ligninolytic fungi. Curr Microbiol 38:27–32PubMedCrossRefGoogle Scholar
  201. Rodríguez-Delgadoa MM, Alemán-Nava GS, Rodríguez-Delgado J, Dieck-Assad G, Martínez-Chapa SO, Barceló D, Parraa R (2015) Laccase-based biosensors for detection of phenolic compounds. Trends Analyt Chem 74:21–45CrossRefGoogle Scholar
  202. Rogalski J, Lundell T, Leonowicz A, Hatakka AI (1991) Influence of aromatic compounds and lignin on production of ligninolytic enzymes by Phlebia radiata. Phytochemistry 30:2869–2872CrossRefGoogle Scholar
  203. Rubilar O, Diez MC, Gianfreda L (2008) Transformation of chlorinated phenolic compounds by white rot fungi. Crit Rev Environ Sci Technol 38(4):227–268CrossRefGoogle Scholar
  204. Ruiz-Duenas FJ, Morales M, Garcia E, Miki Y, Martinez MJ, Martinez AT (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Biotechnol 60:441–452Google Scholar
  205. Russo ME, Giardina P, Marzocchella A, Salatino P, Sannia G (2008) Assessment of anthraquinone-dye conversion by free and immobilized crude laccase mixtures. Enzym Microb Technol 42(6):521–530CrossRefGoogle Scholar
  206. Sadhasivam S, Savitha S, Swaminathan K, Lin F (2008) Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1. Process Biochem 43:736–742CrossRefGoogle Scholar
  207. Salis A, Pisano M, Monduzzi M, Solinas V, Sanjust E (2009) Laccase from Pleurotus sajor-caju on functionalised SBA-15 mesoporous silica: immobilisation and use for the oxidation of phenolic compounds. J Mol Catal B Enzym 58:175–180CrossRefGoogle Scholar
  208. Sanjay K, Kumaresan N, Akhilender K, Viswanatha S, Narasimhamurthy K, Umesh S (2007) Safety evaluation of pigment containing Aspergillus carbonarius biomass in albino rats. Food Chem Toxicol 45:431–439PubMedCrossRefGoogle Scholar
  209. Santhanam N, Vivanco JM, Decker SR, Reardon KF (2011) Expression of industrially relevant laccases: prokaryotic style. Trends Biotechnol 29:480–489PubMedCrossRefGoogle Scholar
  210. Sarika C, Rekha K, Narasimha Murthy B (2014) Laccase based amperometric biosensor for industrial waste waters: a comparative study on covalent immobilization methods on gold electrode. IOSR J Appl Chem 7(10):20–27CrossRefGoogle Scholar
  211. Saxena A, Chauhan PS (2016) Role of various enzymes in deinking of paper: a review. Crit Rev Biotechnol 15:1–15Google Scholar
  212. Sayed YR (2014) Aflatoxin detoxification by manganese peroxidase purified from Pleurotus ostreatus. Braz J Microbiol 45(1):127–134CrossRefGoogle Scholar
  213. Sharma P, Singh L, Dilbaghi N (2009) Biodegradation of Orange II by Phanerochaete chrysosporium in simulated waste water. J Sci Ind Res 68:157–161Google Scholar
  214. Shin KS, Oh IK, Kim CJ (1997) Production and purification of remazol brilliant blue R decolorizing peroxidase from the culture filtrate of Pleurotus ostreatus. Appl Environ Microbiol 63:1744–1748PubMedPubMedCentralGoogle Scholar
  215. Shleev S, Nikitina O, Christenson A, Reimann CT, Yaropolov AI, Ruzgas T, Gorton L (2007) Characterization of two new multiforms of Trametes pubescens laccase. Bioorg Chem 35:35–49PubMedCrossRefPubMedCentralGoogle Scholar
  216. Shraddha R, Shekher S, Sehgal M, Kamthania KA (2011) Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res. 217861, 11 pGoogle Scholar
  217. Siddiqui KS, Ertan H, Charlton T, Poljak A, Daud Khaled AK, Yang X, Marshall G, Cavicchioli R (2014) Versatile peroxidase degradation of humic substances: use of isothermal titration calorimetry to assess kinetics, and applications to industrial wastes. J Biotechnol 178:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  218. Sinclair R, Yamazaki I, Bumpus J, Brock B, Chang CS, Albo A, Powers L (1992) Structure of the active site of lignin peroxidase isozyme H2: native enzyme, compound III, and reduced form. Biochemist 31:4892–4899CrossRefGoogle Scholar
  219. Sing NN, Husaini A, Zulkharnain A, Roslan HA (2017) Decolourisation Capabilities of Ligninolytic Enzymes Produced by Marasmius cladophyllus UMAS MS8 on Remazol Brilliant Blue R and Other Azo Dyes. Bio Med Res Int. 1325754: 8 pGoogle Scholar
  220. Singh MP, Srivastava AK (2016) Decolorization of synthetic textile dye and enzymes production by improved strains of pleurotus species. Cell Mol Biol 62:145. Scholar
  221. Singh G, Bhalla A, Capalash N, Sharma P (2010) Characterization of immobilized laccase from c-proteobacterium JB: approach towards the development of biosensor for the detection of phenolic compounds. Indian J Sci Technol 3:48–53Google Scholar
  222. Singh G, Bhalla A, Kaur P, Capalash N, Sharma P (2011) Laccase from prokaryotes: a new source for an old enzyme. Rev Environ Sci Technol 10(4):309–326Google Scholar
  223. Singh P, Jain P, Verma R, Jagadish RS (2016) Characterization of Lignin peroxidase from Paeciomyces species for Decolorisation of pulp and paper mill effluent. J Sci Ind Res 75:500–505Google Scholar
  224. Sodaneath H, Lee JI, Yang SO, Jung H, Ryu HW, Cho KS (2017) Decolorization of textile dyes in an air-lift bioreactor inoculated with Bjerkandera adusta OBR105. J Environ Sci Health A 52:1099–1111CrossRefGoogle Scholar
  225. Soderhall K (1999) Invertebrate immunity. Dev Comp Immunol 23:263–266PubMedCrossRefGoogle Scholar
  226. Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2605PubMedCrossRefGoogle Scholar
  227. Srinivasan C, D’Souza TM, Boominathan K, Reddy CA (1995) Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F-1767. Appl Environ Microbiol 61:4274–4277PubMedPubMedCentralGoogle Scholar
  228. Stoj C, Kosman DJ (2003) Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. FEBS Lett 554:422–426PubMedCrossRefGoogle Scholar
  229. Strong PJ, Claus H (2011) Laccase: a review of its past and its future in bioremediation. Crit Rev Environ Sci Technol 41(4):373–434CrossRefGoogle Scholar
  230. Surwase SV, Patil SA, Srinivas S, Jadhav JP (2016) Interaction of small molecules with fungal laccase: a surface plasmon resonance based study. Enzym Microb Technol 82:110–114CrossRefGoogle Scholar
  231. Sutzkover-Gutman I, Hasson D, Semiat R (2010) Humic substances fouling in ultrafiltration processes. Desalination 261:218–231CrossRefGoogle Scholar
  232. Szamocki RE, Flexer V, Levin L, Forchiasin F, Calvo EJ (2009) Oxygen cathode based on a layer-by-layer self-assembled laccase and osmium redox mediator. Electrochim Acta 54(7):1970–1977CrossRefGoogle Scholar
  233. Tapia-Tussell R, Pérez-Brito D, Rojas-Herrera R, Cortes-Velazquez A, Rivera-Muñoz G, Solis-Pereira S (2011) New laccase-producing fungi isolates with biotechnological potential in dye decolorization. Afr J Biotechnol 10(50):10134–10142CrossRefGoogle Scholar
  234. Telke AA, Kadam AA, Jagtap SS, Jadhav JP, Govindwar SP (2010) Biochemical characterization and potential for textile dye degradation of blue laccase from Aspergillus ochraceus NCIM-1146. Biotechnol Bioprocess Eng 15:696–703CrossRefGoogle Scholar
  235. Tian YS, Xu H, Peng RH, Yao QH, Wang RT (2014) Heterologous expression and characterization of laccase 2 from Coprinopsis cinerea capable of decolourizing different recalcitrant dyes. Biotechnol Biotechnol Equip 28(2):248–258PubMedPubMedCentralCrossRefGoogle Scholar
  236. Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. In: Wood K. and Kellogg S.T. eds. Methods Enzymol 161(part B):238–249CrossRefGoogle Scholar
  237. Valli K, Wariishi H, Gold MH (1990) Oxidation of monomethoxylated aromatic compounds by lignin peroxidase: role of Veratryl alcohol in lignin biodegradation. Biochemist 29:8535–8539CrossRefGoogle Scholar
  238. Valls C, Roncero MB (2009) Using both xylanase and laccase enzymes for pulp bleaching. Bioresour Technol 100:2032–2039PubMedCrossRefPubMedCentralGoogle Scholar
  239. Valmaseda M, Almendros G, Martinez AT (1991) Chemical transformation of wheat straw constituents after solid-state fermentation with selected lignocellulose-degrading fungi. Biomass Bioenergy 1:261–266CrossRefGoogle Scholar
  240. Varela E, Martinez AT, Martinez MJ (2000) Suthern blot screening for lignin peroxidase and ary-alcohol oxidase genes in 30 fungal species. J Biotechnol 83:245–251PubMedCrossRefPubMedCentralGoogle Scholar
  241. Verma P, Madamwar D (2002) Decolorization of synthetic textile dyes by lignin peroxidase of Phanerochaete chrysosporium. Folia Microbiol 47(3):283–286CrossRefGoogle Scholar
  242. Vikineswary S, Abdullah N, Renuvathani M, Sekaran M, Pandey A, Jones EBG (2006) Productivity of laccase in solid substrate fermentation of selected agro-residues by Pycnoporus sanguineus. Bioresour Technol 97:171–177PubMedCrossRefPubMedCentralGoogle Scholar
  243. Vikram T, Kumar P, Anita V, Duni C (2015) Decolorization of dye by alginate immobilized laccase from Cercospora SPF-6: using compact 5 stage plug flow reactor. Int J Curr Microbiol App Sci 4(1):183–200Google Scholar
  244. Vinoth Kumar V, Dinesh Kirupha S, Periyaraman P, Subramanian S (2011) Screening and induction of laccase activity in fungal species and its application in dye decolourization. Afr J Microbiol Res 5(11):1261–1267CrossRefGoogle Scholar
  245. Virk AP, Puri M, Gupta V, Capalash N, Sharma P (2013) Combined enzymatic and physical deinking methodology for efficient ecofriendly recycling of old newsprint. PLoS One 8:72346CrossRefGoogle Scholar
  246. Viswanath B, Subhosh Chandra M, Pallavi H, Rajasekhar Reddy B (2008) Screening and assessment of laccase producing fungi isolated from different environmental samples. Afr J Biotechnol 7(8):1129–1133Google Scholar
  247. Wang P, Fan X, Cu L, Wang Q, Zhou A (2008) Decolorization of reactive dyes by laccase immobilized in alginate/gelatin blent with PEG. J Environ Sci 20:1519–1522CrossRefGoogle Scholar
  248. Wang SS, Ning YJ, Wang SN, Zhang J, Zhang GQ, Chen QJ (2017) Purification, characterization, and cloning of an extracellular laccase with potent dye decolorizing ability from white rot fungus Cerrena unicolor GSM-01. Int J Biol Macromol 95:920–927PubMedCrossRefPubMedCentralGoogle Scholar
  249. Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187PubMedCrossRefPubMedCentralGoogle Scholar
  250. Williamson PR, Wakamatsu K, Ito S (1998) Melanin biosynthesis in Cryptococcus neoformans. J Bacteriol 180:1570–1572PubMedPubMedCentralGoogle Scholar
  251. Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Microbiol 157:174–209Google Scholar
  252. Wong Y, Yu J (1999) Laccase-catalyzed decolorization of synthetic dyes. Water Res 33:3512–3520CrossRefGoogle Scholar
  253. Xenakis A, Zoumpanioti M, Stamatis H (2016) Enzymatic reactions in structured surfactant-free microemulsions. Curr Opin Colloid Interface Sci 22:41–45CrossRefGoogle Scholar
  254. Xu Q, Fu Y, Qin M, Qiu H (2007) Surface properties of old news print laccase–violuric acid system deinked pulp. Appita J 60:372–377Google Scholar
  255. Xu Q, Fu Y, Gao Y, Qin M (2009) Performance and efficiency of old newspaper deinking by combining cellulase/hemicellulase with laccase–violuric acid system. Waste Manag 29:1486–1490PubMedCrossRefPubMedCentralGoogle Scholar
  256. Xu R, Yifang S, Xiaotao W, Fengting L, Bingru Z (2014) Triclosan removal by laccase immobilized on mesoporous nanofibers: Strong adsorption and efficient degradation. Chem Eng J 255:63–70CrossRefGoogle Scholar
  257. Xu H, Guo MY, Gao YH, Bai XH, Zhou XW (2017) Expression and characteristics of manganese peroxidase from Ganoderma lucidum in Pichia pastoris and its application in the degradation of four dyes and phenol. BMC Biotechnol 17:19PubMedPubMedCentralCrossRefGoogle Scholar
  258. Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307PubMedCrossRefPubMedCentralGoogle Scholar
  259. Yadav A, Verma P, Kumar R, Kumar V, Kumar K (2017) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22Google Scholar
  260. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. Scholar
  261. Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi. Volume 1: Diversity and enzymes perspectives. Springer, ChamCrossRefGoogle Scholar
  262. Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: Perspective for value-added products and environments. Springer, ChamCrossRefGoogle Scholar
  263. Yang J, Yang X, Lin Y, Ng TB, Lin J, Ye X (2015) Laccase-catalyzed decolorization of malachite green: performance optimization and degradation mechanism. PLoS One 28:1–14Google Scholar
  264. Yang J, Wang Z, Lin Y, Ng TB, Ye X, Lin J (2017a) Immobilized Cerrena sp. laccase: preparation, thermal inactivation, and operational stability in malachite green decolorization. Sci Rep:7.
  265. Yang SO, Sodaneath H, Lee JI, Jung H, Choi JH, Ryu HW, Cho KS (2017b) Decolorization of acid, disperse and reactive dyes by Trametes versicolor CBR43. J Environ Sci Health A Tox Hazard Subst Environ Eng 52(9):862–872PubMedCrossRefPubMedCentralGoogle Scholar
  266. Zabin KB, Sikandar IM, Harichandra ZN (2017) Purification and immobilization of laccase from Trichoderma harzianum strain HZN10 and its application in dye decolorization. J Genet Eng Biotechnol 15(1):139–150CrossRefGoogle Scholar
  267. Zahmatkesh M, Spanjers H, van Lier JB (2017) Fungal treatment of humic-rich industrial wastewater: application of white rot fungi in remediation of food-processing wastewater. Environ Technol 38(21):2752–2762PubMedCrossRefPubMedCentralGoogle Scholar
  268. Zamocky M, Obinger C (2010) Molecular phylogeny of heme peroxidases. In: Torresl E, Ayala M (eds) Biocatalysis based on heme peroxidases. Springer, Heidelberg Dordrecht, London, New YorkGoogle Scholar
  269. Zeng J, Lin X, Zhang J, Li X, Wong MH (2011) Oxidation of polycyclic aromatic hydrocarbons by the bacterial laccase CueO from E. coli. Appl Microbiol Biotechnol 89:1841–1849PubMedCrossRefPubMedCentralGoogle Scholar
  270. Zhang D, Manfeng D, Hongbin C, Songping Z, He Z (2017) Laccase immobilized on magnetic nanoparticles by dopamine polymerization for 4-chlorophenol removal. Green Energy Environ 2:393–400CrossRefGoogle Scholar
  271. Zhao D, Zhang X, Cui DZ, Zhao M (2012) Characterisation of a novel white laccase from the deuteromycete fungus Myrothecium verrucaria NF-05 and its decolourisation of dyes. Plos One 7, ARTN 38817Google Scholar
  272. Zhao LH, Chen W, Wang LL, Sun HJ, Zhu Z (2017) Improvement of laccase production by Pleurotus ostreatus by means of agroindustrial waste and fermentation kinetics. Mycosphere 8(1):147–161CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shanmugapriya S. 
    • 1
  • G. Manivannan
    • 2
  • Selvakumar Gopal 
    • 3
  • Sivakumar Natesan 
    • 1
    Email author
  1. 1.Department of Molecular MicrobiologySchool of Biotechnology, Madurai Kamaraj UniversityMaduraiIndia
  2. 2.Department of Microbiology and BiotechnologySVN CollegeMaduraiIndia
  3. 3.Department of MicrobiologyAlagappa UniversityKaraikudiIndia

Personalised recommendations