White Rot Fungi and Their Enzymes for the Treatment of Industrial Dye Effluents

  • Dhevagi Periasamy
  • Sudhakarn Mani
  • Ramya Ambikapathi
Part of the Fungal Biology book series (FUNGBIO)


The major thrust of scientific research is pollution control due to increased discharge and improper management of industrial wastes, especially textile industries. Textile industry is one of the major industries, which uses many xenobiotics as dyes and releases several undesirable pollutants into the environment. A wide variety of dyes were used in the textile industry, which are complex structured and constitute the largest group among the recalcitrant xenobiotics. Due to lower degree of dye fixation to fabrics, more than 10% of the dyes goes into wastewater and released into the environment unaltered. Dye removal can be done with physical and physicochemical methods, but these methods are expensive and require operation expertise. Complete breakdown of the dye molecules is the desired outcome and that is possible with biological means. Decolourization with biological means has gained great attention, and many researchers suggested several biotechnological approaches for combating the textile pollution. Many bacteria are having enzymes for complete degradation of the azodyes, but it needs alterations in the process. Recently, fungal decolourization, especially white rot fungi, is gaining importance, and these fungi are capable of producing one or more extracellular, non-specific, non-selective enzymes which can able to degrade a wide range of xenobiotics. The white rot fungal enzymes are mainly composed of lignin peroxidase, manganese-dependent peroxidases, laccases and hydrogen peroxide-producing peroxidases. They are the most efficient microorganisms degrading textile dyes, which are structurally different and complex. White rot fungal enzymes and its degradation abilities to remove synthetic dyes from textile wastewater are compiled in this chapter.


Decolourization Degradation Fungal enzymes Industrial dye effluents White rot fungi 



The authors are grateful to the Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, for providing laboratory facilities. The authors extend their gratitude to Mrs. P. Divya and Mr. P. Sivasamy for providing textile wastes-related data.


  1. Abadulla E, Tzanov T, Costa S, Robra K-H, Cavaco-Paulo A, Gübitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66:3357–3362PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anastasi A, Spina F, Prigione V, Tigini V, Giansanti P, Varese GC (2010) Scale-up of a bioprocess for textile wastewater treatment using Bjerkandera adusta. Bioresour Technol 101:3067–3075PubMedCrossRefPubMedCentralGoogle Scholar
  3. Anliker R (1979) Ecotoxicology of dyestuffs—a joint effort by industry. Ecotoxicol Environ Saf 3:59–74PubMedCrossRefPubMedCentralGoogle Scholar
  4. Asgher M, Kausar S, Bhatti HN, Shah SAH, Ali M (2008) Optimization of medium for decolorization of solar golden yellow R direct textile dye by Schizophyllum commune IBL-06. Int Biodeterior Biodegradation 61:189–193CrossRefGoogle Scholar
  5. Balan DS, Monteiro RT (2001) Decolorization of textile indigo dye by ligninolytic fungi. J Biotechnol 89:141–145PubMedCrossRefPubMedCentralGoogle Scholar
  6. Banat IM, Nigam P, Singh D, Marchant R (1997) Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol 61:103–103CrossRefGoogle Scholar
  7. Ben Younes S, Mechichi T, Sayadi S (2007) Purification and characterization of the laccase secreted by the white rot fungus Perenniporia tephropora and its role in the decolourization of synthetic dyes. J Appl Microbiol 102:1033–1042PubMedPubMedCentralGoogle Scholar
  8. Beydilli M, Pavlostathis S, Tincher W (1998) Decolorization and toxicity screening of selected reactive azo dyes under methanogenic conditions. Water Sci Technol 38:225–232CrossRefGoogle Scholar
  9. Blánquez P, Sarrà M, Vicent T (2008) Development of a continuous process to adapt the textile wastewater treatment by fungi to industrial conditions. Process Biochem 43:1–7CrossRefGoogle Scholar
  10. Boer CG, Obici L, de Souza CGM, Peralta RM (2004) Decolorization of synthetic dyes by solid state cultures of Lentinula (Lentinus) edodes producing manganese peroxidase as the main ligninolytic enzyme. Bioresour Technol 94:107–112PubMedCrossRefPubMedCentralGoogle Scholar
  11. Borchert M, Libra JA (2001) Decolorization of reactive dyes by the white rot fungus Trametes versicolor in sequencing batch reactors. Biotechnol Bioeng 75:313–321PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bourbonnais R, Paice MG, Reid ID, Lanthier P, Yaguchi M (1995) Lignin oxidation by laccaseisozymes from Trametes versicolor and role of the mediator 2, 2′-azinobis (3-ethylbenzthiazoline-6-sulfonate) in Kraft lignin depolymerization. Appl Environ Microbiol 61:1876–1880PubMedPubMedCentralGoogle Scholar
  13. Cameron M, Timofeevski S, Aust S (2000) Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl Microbiol Biotechnol 54:751–758PubMedCrossRefGoogle Scholar
  14. Carliell CM, Barclay SJ, Naidoo N, Buckley CA, Mulholland DA, Senior E (1995) Microbial decolourisation of a reactive azo dye under anaerobic conditions. Water SA 21(1):61–69Google Scholar
  15. Chagas EP, Durrant LR (2001) Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzym Microb Technol 29:473–477CrossRefGoogle Scholar
  16. Chander M, Arora DS (2007) Evaluation of some white-rot fungi for their potential to decolourise industrial dyes. Dyes Pigments 72:192–198CrossRefGoogle Scholar
  17. Chavan R (2001) Indian textile industry-environmental issues. Indian J Fibre Text Res 26:11–21Google Scholar
  18. Christian V, Shrivastava R, Shukla D, Modi H, Vyas BRM (2005) Mediator role of veratryl alcohol in the lignin peroxidase-catalyzed oxidative decolorization of Remazol Brilliant Blue R. Enzym Microb Technol 36:426–431CrossRefGoogle Scholar
  19. Chudgar RJ (1985) In: Kroschwitz (ed) Kirk Othmer encyclopedia of chemical technology, 4th edn. Wiley, New York, pp 821–875Google Scholar
  20. Chung KT (2000) Mutagenicity and carcinogenicity of aromatic amines metabolically produced from azo dyes. J Environ Sci Health 18:51–74CrossRefGoogle Scholar
  21. Chung K-T, Fulk GE, Egan M (1978) Reduction of azo dyes by intestinal anaerobes. Appl Environ Microbiol 35:558–562PubMedPubMedCentralGoogle Scholar
  22. Collins PJ, Field JA, Teunissen P, Dobson A (1997) Stabilization of lignin peroxidases in white rot fungi by tryptophan. Appl Environ Microbiol 63:2543–2548PubMedPubMedCentralGoogle Scholar
  23. Conneely A, Smyth W, McMullan G (2002) Study of the white-rot fungal degradation of selected phthalocyanine dyes by capillary electrophoresis and liquid chromatography. Anal Chim Acta 451:259–270CrossRefGoogle Scholar
  24. Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114–1118PubMedPubMedCentralGoogle Scholar
  25. D’Souza-Ticlo D, Verma AK, Mathew M, Raghukumar C (2006) Effect of nutrient nitrogen on laccase production, its isozyme pattern and effluent decolorization by the fungus NIOCC# 2a, isolated from mangrove wood. Indian J Mar Sci 34(4):364–372Google Scholar
  26. Diamantidis G, Effosse A, Potier P, Bally R (2000) Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol Biochem 32:919–927CrossRefGoogle Scholar
  27. Edwards JC (2000) Investigation of color removal by chemical oxidation for three reactive textile dyes and spent textile dye wastewater. (Doctoral dissertation, Virginia Tech)Google Scholar
  28. Eichlerova I, Homolka L, Nerud F (2006) Synthetic dye decolorization capacity of white rot fungus Dichomitussqualens. Bioresour Technol 97:2153–2159PubMedCrossRefPubMedCentralGoogle Scholar
  29. El Monssef RAA, Hassan EA, Ramadan EM (2016) Production of laccase enzyme for their potential application to decolorize fungal pigments on aging paper and parchment. Ann Agric Sci 61:145–154CrossRefGoogle Scholar
  30. Ellouze M, Sayadi S (2016) White-rot fungi and their enzymes as a biotechnological tool for xenobiotic bioremediation. In: Management of hazardous wastes. InTech, London, pp 103–120.Google Scholar
  31. Fang Z, Sato T, Smith JRL, Inomata H, Arai K, Kozinski JA (2008) Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresour Technol 99:3424–3430PubMedCrossRefPubMedCentralGoogle Scholar
  32. Faraco V, Pezzella C, Miele A, Giardina P, Sannia G (2009) Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes. Biodegradation 20:209–220PubMedCrossRefPubMedCentralGoogle Scholar
  33. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719PubMedCrossRefGoogle Scholar
  34. Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971PubMedCrossRefPubMedCentralGoogle Scholar
  35. Freeman HS, Sokolowska J (1999) Developments in dyestuff chemistry. Rev Prog Color Relat Top 29:8–22CrossRefGoogle Scholar
  36. Ghaly A, Ananthashankar R, Alhattab M, Ramakrishnan V (2014) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 5:1–19Google Scholar
  37. Gill P, Arora D, Chander M (2002) Biodecolourization of azo and triphenylmethane dyes by Dichomitus squalens and Phlebia sp. J Ind Microbiol Biotechnol 28:201–203PubMedCrossRefPubMedCentralGoogle Scholar
  38. Gochev V, Krastanov A (2007) Isolation of laccase producing Trichoderma spp. Bulgarian J Agr Sci 13:171Google Scholar
  39. Gomaa OM, Linz JE, Reddy C (2008) Decolorization of Victoria blue by the white rot fungus, Phanerochaete chrysosporium. World J Microbiol Biotechnol 24:2349–2356CrossRefGoogle Scholar
  40. Gomes E, Aguiar AP, Carvalho CC, Bonfá MRB, Rd S, Boscolo M (2009) Ligninases production by Basidiomycetes strains on lignocellulosic agricultural residues and their application in the decolorization of synthetic dyes. Braz J Microbiol 40:31–39PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gupta BL (1992) Salinisation and Alkalisation of ground water pollution due to textile hand processing Industries in Pali. Curr Agric 16:59Google Scholar
  42. Hadibarata T, Adnan LA, Yusoff ARM, Yuniarto A, Zubir MMFA, Khudhair AB, Teh ZC, Naser MA (2013) Microbial decolorization of an azo dye reactive black 5 using white-rot fungus Pleurotus eryngii F032. Water Air Soil Pollut 224:1595CrossRefGoogle Scholar
  43. Harazono K, Nakamura K (2005) Decolorization of mixtures of different reactive textile dyes by the white-rot basidiomycete Phanero chaetesordida and inhibitory effect of polyvinyl alcohol. Chemosphere 59:63–68PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. Microbiol Rev 13:125–135Google Scholar
  45. Heinfling A, Martinez M, Martinez A, Bergbauer M, Szewzyk U (1998) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64:2788–2793PubMedPubMedCentralGoogle Scholar
  46. Hofrichter M, Lundell T, Hatakka A (2001) Conversion of milled pine wood by manganese peroxidase from Phlebia radiata. Appl Environ Microbiol 67:4588–4593PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hölker U, Dohse J, Höfer M (2002) Extracellular laccases in ascomycetes Trichoderma atroviride and Trichoderma harzianum. Folia Microbiol 47:423–427CrossRefGoogle Scholar
  48. Horning RH (1977) Characterization and treatment of textile dyeing wastewaters. Text Chem Color 9(4):24Google Scholar
  49. Husain Q (2010) Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Rev Environ Sci Biotechnol 9(2):117–140CrossRefGoogle Scholar
  50. Ishikawa YET, Leder A (2000) Chemical economics handbook: dyes. SRI Chemical and Health Business Services, Menlo ParkGoogle Scholar
  51. Jain N, Kaur A, Singh D, Dahiya S (2000) Degradation of acrylic Red 2 B dye by P. crysosporium: involvement of carbon and nitrogen source. J Environ Biol 21:179–183Google Scholar
  52. Järvinen J, Taskila S, Isomäki R, Ojamo H (2012) Screening of white-rot fungi manganese peroxidases: a comparison between the specific activities of the enzyme from different native producers. AMB Express 2:62PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kaal EE, Field JA, Joyce TW (1995) Increasing ligninolytic enzyme activities in several white-rot basidiomycetes by nitrogen-sufficient media. Bioresour Technol 53:133–139CrossRefGoogle Scholar
  54. Karim MAA, Annuar MSM (2009) Novel application of coconut husk as growth support matrix and natural inducer of fungal laccase production in a bubble column reactor. Asia-Pac J Mol Biol Biotechnol 17:47–52Google Scholar
  55. Kaushik P, Malik A (2009) Fungal dye decolourization: Recent advances and future potential. Environ Int 35:127–141PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kiiskinen LL, Rättö M, Kruus K (2004) Screening for novel laccase-producing microbes. J Appl Microbiol 97:640–646PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kirby N, Marchant R, McMullan G (2000) Decolourisation of synthetic textile dyes by Phlebia tremellosa. FEMS Microbiol Lett 188:93–96PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kothandaraman V, Aboo K, Sastry C (1976) Characteristics of wastes from a textile mill. Indian J Environ Health 18:99–112Google Scholar
  59. Kunjadia PD, Sanghvi GV, Kunjadia AP, Mukhopadhyay PN, Dave GS (2016) Role of ligninolytic enzymes of white rot fungi (Pleurotus sp.) grown with azo dyes. Springerplus 5:1487PubMedPubMedCentralCrossRefGoogle Scholar
  60. Levin L, Papinutti L, Forchiassin F (2004) Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Bioresour Technol 94:169–176PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lewis DM (1999) Coloration in the next century. Rev Prog Color Relat Top 29:23–28CrossRefGoogle Scholar
  62. Loyd CK (1992) Anaerobic/aerobic degradation of a textile dye wastewater. (Doctoral dissertation, Virginia Tech)Google Scholar
  63. Ma L, Zhuo R, Liu H, Yu D, Jiang M, Zhang X, Yang Y (2014) Efficient decolorization and detoxification of the sulfonatedazo dye Reactive Orange 16 and simulated textile wastewater containing Reactive Orange 16 by the white-rot fungus Ganoderma sp. En3 isolated from the forest of Tzu-chin Mountain in China. Biochem Eng J 82:1–9CrossRefGoogle Scholar
  64. Maas R, Chaudhari S (2005) Adsorption and biological decolourization of azo dye Reactive Red 2 in semicontinuous anaerobic reactors. Process Biochem 40:699–705CrossRefGoogle Scholar
  65. Maijala P, Kleen M, Westin C, Poppius-Levlin K, Herranen K, Lehto J, Reponen P, Mäentausta O, Mettälä A, Hatakka A (2008) Biomechanical pulping of softwood with enzymes and white-rot fungus Physisporinus rivulosus. Enzym Microb Technol 43:169–177CrossRefGoogle Scholar
  66. Manavalan T, Manavalan A, Thangavelu KP, Heese K (2013) Characterization of optimized production, purification and application of laccase from Ganoderma lucidum. Biochem Eng J 70:106–114CrossRefGoogle Scholar
  67. McCurdy MW (1991) Chemical reduction and oxidation combined with biodegradation for the treatment of a textile dye wastewater. (Doctoral dissertation, Virginia Tech)Google Scholar
  68. McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat I, Marchant R, Smyth W (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87PubMedCrossRefPubMedCentralGoogle Scholar
  69. Mester T, Field JA (1998) Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417PubMedCrossRefPubMedCentralGoogle Scholar
  70. Michaels GB, Lewis DL (1985) Sorption and toxicity of azo and triphenylmethane dyes to aquatic microbial populations. Environ Toxicol Chem 4:45–50CrossRefGoogle Scholar
  71. Michniewicz A, Ledakowicz S, Ullrich R, Hofrichter M (2008) Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor. Dyes Pigments 77:295–302CrossRefGoogle Scholar
  72. Mohorčič M, Teodorovič S, Golob V, Friedrich J (2006) Fungal and enzymatic decolourisation of artificial textile dye baths. Chemosphere 63:1709–1717PubMedCrossRefPubMedCentralGoogle Scholar
  73. Moreira-Neto S, Mussatto SI, Machado K, Milagres AM (2013) Decolorization of salt-alkaline effluent with industrial reactive dyes by laccase-producing basidiomycetes strains. Lett Appl Microbiol 56:283–290PubMedCrossRefPubMedCentralGoogle Scholar
  74. Morozova O, Shumakovich G, Gorbacheva M, Shleev S, Yaropolov A (2007) “Blue” laccases. Biochem Mosc 72:1136–1150CrossRefGoogle Scholar
  75. Niku-Paavola ML, Karhunen E, Salola P, Raunio V (1988) Ligninolytic enzymes of the white-rot fungus Phlebia radiata. Biochem J 254:877–884PubMedPubMedCentralCrossRefGoogle Scholar
  76. Novotný Č, Erbanova P, Cajthaml T, Rothschild N, Dosoretz C, Šašek V (2000) Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl Microbiol Biotechnol 54:850–853PubMedCrossRefPubMedCentralGoogle Scholar
  77. O’neill C, Lopez A, Esteves S, Hawkes F, Hawkes D, Wilcox S (2000) Azo-dye degradation in an anaerobic-aerobic treatment system operating on simulated textile effluent. Appl Microbiol Biotechnol 53:249–254PubMedCrossRefPubMedCentralGoogle Scholar
  78. Osorio Echavarría J, Vidal Benavides AI, Quintero Díaz JC (2011) Decolorization of textile wastewater using the white rot fungi anamorph R1 of Bjerkandera sp. Revista Facultad de Ingeniería Universidad de Antioquia 57:85–93Google Scholar
  79. Özsoy HD, Ünyayar A, Mazmancı MA (2005) Decolourisation of reactive textile dyes Drimarene Blue X3LR and Remazol Brilliant Blue R by Funaliatrogii ATCC 200800. Biodegradation 16:195–204PubMedCrossRefPubMedCentralGoogle Scholar
  80. Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924PubMedPubMedCentralCrossRefGoogle Scholar
  81. Peralta-Zamora P, Pereira CM, Tiburtius ER, Moraes SG, Rosa MA, Minussi RC, Durán N (2003) Decolorization of reactive dyes by immobilized laccase. Appl Catal B Environ 42(2):131–144CrossRefGoogle Scholar
  82. Périé FH, Gold MH (1991) Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl Environ Microbiol 57:2240–2245PubMedPubMedCentralGoogle Scholar
  83. Puscas EL, Stanescu MD, Fogorasi M, Dalea V (2003) Dezvoltarea durabila prin protectia mediului si biotehnologii textile. Editura Universitatii Aurel Vlaicu, AradGoogle Scholar
  84. Revankar MS, Lele SS (2006) Synthetic dye decolorization capacity of white rot fungus Dichomitus squalens. Bioresour Technol 97:2153–2159CrossRefGoogle Scholar
  85. Rita de Cássia M, de Barros GE, Pereira N Jr, Marin-Morales MA, Machado KMG, de Gusmão NB (2013) Biotreatment of textile effluent in static bioreactor by Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181. Bioresour Technol 142:361–367CrossRefGoogle Scholar
  86. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255PubMedCrossRefPubMedCentralGoogle Scholar
  87. Roriz MS, Osma JF, Teixeira JA, Couto SR (2009) Application of response surface methodological approach to optimise Reactive Black 5 decolouration by crude laccase from Trametes pubescens. J Hazard Mater 169:691–696PubMedCrossRefPubMedCentralGoogle Scholar
  88. Sadhasivam S, Savitha S, Swaminathan K, Lin F-H (2008) Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1. Process Biochem 43:736–742CrossRefGoogle Scholar
  89. Sarayu K, Sandhya S (2012) Current technologies for biological treatment of textile wastewater--a review. Appl Biochem Biotechnol 167:645–661PubMedCrossRefPubMedCentralGoogle Scholar
  90. Selvakumar S, Manivasagan R, Chinnappan K (2013) Biodegradation and decolourization of textile dye wastewater using Ganoderma lucidum. Biotechnol Adv 3:71–79Google Scholar
  91. Senthilkumar S, Perumalsamy M, Prabhu HJ (2014) Decolourization potential of white-rot fungus Phanerochaete chrysosporium on synthetic dye bath effluent containing Amido black 10B. J Saudi Chem Soc 18:845–853CrossRefGoogle Scholar
  92. Shaul GM, Holdsworth TJ, Dempsey CR, Dostal KA (1991) Fate of water soluble azo dyes in the activated sludge process. Chemosphere 22:107–119CrossRefGoogle Scholar
  93. Singhal V, Rathore VS (2001) Effects of Zn2+ and Cu2+ on growth, lignin degradation and ligninolytic enzymes in Phanerochaete chrysosporium. World J Microbiol Biotechnol 17(3):235–240CrossRefGoogle Scholar
  94. Sivasamy P (2008) Decolorisation of textile effluent. Tamil Nadu Agricultural University M.Sc ThesisGoogle Scholar
  95. Sudhakar P, Palaniappan R, Gowrisankar R (2002) Degradation of azo dye (Black-E) by an indigenous bacterium Pseudomonas sp. BSP-4. Asian J Microbiol Biotechnol Environ Sci 4:203–208Google Scholar
  96. Sugiura M, Hirai H, Nishida T (2003) Purification and characterization of a novel lignin peroxidase from white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiol Lett 224:285–290PubMedCrossRefPubMedCentralGoogle Scholar
  97. Swamy J, Ramsay J (1999) The evaluation of white rot fungi in the decoloration of textile dyes. Enzym Microb Technol 24:130–137CrossRefGoogle Scholar
  98. Teerapatsakul C, Parra R, Bucke C, Chitradon L (2007) Improvement of laccase production from Ganoderma sp. KU-Alk4 by medium engineering. World J Microbiol Biotechnol 23:1519–1527CrossRefGoogle Scholar
  99. Tekere M, Mswaka A, Zvauya R, Read J (2001a) Growth, dye degradation and ligninolytic activity studies on Zimbabwean white rot fungi. Enzym Microb Technol 28:420–426CrossRefGoogle Scholar
  100. Tekere M, Zvauya R, Read JS (2001b) Ligninolytic enzyme production in selected sub-tropical white rot fungi under different culture conditions. J Basic Microbiol 41:115–129PubMedCrossRefPubMedCentralGoogle Scholar
  101. Teli M (2008) Textile coloration industry in India. Color Technol 124(1):1–13CrossRefGoogle Scholar
  102. Toh YC, Yen JJL, Obbard JP, Ting YP (2003) Decolourisation of azo dyes by white-rot fungi (WRF) isolated in Singapore. Enzym Microb Technol 33:569–575CrossRefGoogle Scholar
  103. Tortella GR, Rubilar O, Gianfreda L, Valenzuela E, Diez MC (2008) Enzymatic characterization of Chilean native wood-rotting fungi for potential use in the bioremediation of polluted environments with chlorophenols. World J Microbiol Biotechnol 24:2805CrossRefGoogle Scholar
  104. Udayasoorian C, Prabu P (2005) Biodegradation of phenols by ligninolytic fungus Trametes versicolor. J Biol Sci 5:558–561CrossRefGoogle Scholar
  105. Urek RO, Pazarlioglu NK (2007) Enhanced production of manganese peroxidase by Phanerochaete chrysosporium. Braz Arch Biol Technol 50:913–920CrossRefGoogle Scholar
  106. Vaidya A (1982) Environmental pollution during chemical processing of synthetic fibers. Colourage 14:3–10Google Scholar
  107. Vasina DV, Moiseenko KV, Fedorova TV, Tyazhelova TV (2017) Lignin-degrading peroxidases in white-rot fungus Trametes hirsuta 072. Absolute expression quantification of full multigene family. PLoS One 12:0173813CrossRefGoogle Scholar
  108. Velázquez-Cedeño M, Farnet A, Ferré E, Savoie J (2004) Variations of lignocellulosic activities in dual cultures of Pleurotus ostreatus and Trichoderma longibrachiatum on unsterilized wheat straw. Mycologia 96:712–719PubMedCrossRefPubMedCentralGoogle Scholar
  109. Vijaya P, Padmavathy P, Sandhya S (2003) Decolourization and biodegradation of reactive azo dyes by mixed culture. Indian J Biotechnol 2:259–263Google Scholar
  110. Viswanath B, Chandra MS, Pallavi H, Reddy BR (2008) Screening and assessment of laccase producing fungi isolated from different environmental samples. Afr J Biotechnol 7(8):1129–1133Google Scholar
  111. Vyas B, Molitoris H-P (1995) Involvement of an extracellular H2O2-dependent ligninolytic activity of the white rot fungus Pleurotus ostreatus in the decolorization of Remazol brilliant blue R. Appl Environ Microbiol 61:3919–3927PubMedPubMedCentralGoogle Scholar
  112. Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187PubMedCrossRefPubMedCentralGoogle Scholar
  113. Will R, Ishikawa Y, Leder A (2000) Synthetic dyes, chemical economics handbook: synthetic dyes. SRI Chemical & Health Business Services, Menlo ParkGoogle Scholar
  114. Willmott N, Guthrie J, Nelson G (1998) The biotechnology approach to colour removal from textile effluent. J Soc Dye Colour 114:38–41CrossRefGoogle Scholar
  115. Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307PubMedCrossRefPubMedCentralGoogle Scholar
  116. Yadav A, Verma P, Kumar R, Kumar V, Kumar K (2017) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22Google Scholar
  117. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the Genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. Scholar
  118. Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi volume 1: diversity and enzymes perspectives. Springer International Publishing, ChamCrossRefGoogle Scholar
  119. Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer International Publishing, ChamCrossRefGoogle Scholar
  120. Zissi U, Lyberatos G (2001) Partial degradation of p-aminoazobenzene by a defined mixed culture of Bacillus subtilis and Stenotrophomonas maltophilia. Biotechnol Bioeng 72:49–54PubMedCrossRefPubMedCentralGoogle Scholar
  121. Zollinger H (1961) Azo and diazo chemistry: aliphatic and aromatic compounds. Interscience Publishers, New York, p 444Google Scholar
  122. Zollinger H (2003) Color chemistry: syntheses, properties, and applications of organic dyes and pigments. John Wiley & SonsGoogle Scholar
  123. Zouari-Mechichi H, Mechichi T, Dhouib A, Sayadi S, Martinez AT, Martinez MJ (2006) Laccase purification and characterization from Trametes trogii isolated in Tunisia: decolorization of textile dyes by the purified enzyme. Enzym Microb Technol 39:141–148CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dhevagi Periasamy
    • 1
  • Sudhakarn Mani
    • 1
  • Ramya Ambikapathi
    • 1
  1. 1.Department of Environmental SciencesTamil Nadu Agricultural UniversityCoimbatoreIndia

Personalised recommendations