Advertisement

Genetic Diversity of Methylotrophic Yeast and Their Impact on Environments

  • Manish Kumar
  • Raghvendra Saxena
  • Pankaj Kumar Rai
  • Rajesh Singh Tomar
  • Neelam Yadav
  • Kusam Lata Rana
  • Divjot Kour
  • Ajar Nath YadavEmail author
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Prokaryotic methylotrophic bacteria are able to consume a number of C1-carbon compounds such as methane, methylamine and methanol, whereas only methanol can be consumed by eukaryotic methylotrophic bacteria as source of carbon and methylamine as a source of nitrogen. The intensive researches explain the beneficial relationship between plants and methylotrophic bacterial communities earlier. Different genera of methylotrophic yeasts such as Candida, Pichia, Torulopsis and Hansenula are able to metabolise C1 corbon compound like formaldehyde and methanol.and a number of genes are involved in the methanol and other substrate utilisation pathways such as AOX (alcohol oxidase), DAS (dihydroxyacetone synthase), FDH (format dehydrogenase) and DAK (dihydroxyacetone kinase). The phylogeny and identification of these methylotrophic yeast strains are done based on either conserved gene sequences or functional gene sequences. The current description involves the genetic diversity of different strains of methylotrophic yeast from various ecosystems, identified at gene level.

Keywords

Genetic diversity Alcohol oxidase Phylogeny C1-compounds 

References

  1. Abad S, Kitz K, Hörmann A, Schreiner U, Hartner FS, Glieder A (2010) Real-time PCR-based determination of gene copy numbers in Pichia pastoris. Biotechnol J 5:413–420CrossRefGoogle Scholar
  2. Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301–5317CrossRefGoogle Scholar
  3. Arthur H, Watson K (1976) Thermal adaptation in yeast: growth temperatures, membrane lipid, and cytochrome composition of psychrophilic, mesophilic, and thermophilic yeasts. J Bacteriol 128:56–68PubMedPubMedCentralGoogle Scholar
  4. Biswas S, Kundu D, Mazumdar S, Saha A, Majumdar B, Ghorai A, Ghosh D, Yadav A, Saxena A (2018) Study on the activity and diversity of bacteria in a New Gangetic alluvial soil (Eutrocrept) under rice-wheat-jute cropping system. J Environ Biol 39:379–386CrossRefGoogle Scholar
  5. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66CrossRefGoogle Scholar
  6. Colao MC, Lupino S, Garzillo AM, Buonocore V, Ruzzi M (2006) Heterologous expression of lcc1 gene from Trametes trogii in Pichia pastoris and characterization of the recombinant enzyme. Microb Cell Factories 5:31CrossRefGoogle Scholar
  7. Craveri R, Cavazzoni V, Sarra P, Succi G, Molteni L, Cardini G, Di Fiore L (1976) Taxonomical examination and characterization of a methanol-utilizing yeast. Antonie Van Leeuwenhoek 42:533–540CrossRefGoogle Scholar
  8. Cregg JM, Madden K, Barringer K, Thill G, Stillman C (1989) Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Mol Cell Biol 9:1316–1323CrossRefGoogle Scholar
  9. Cremata JA, Díaz JM (1999) Conventional and non-conventional yeasts in modern biotechnology. Biotecnol Apl 16:117–125Google Scholar
  10. Csutak O, Stoica I, Ghindea R, Tanase A-M, Vassu T (2010) Insights on yeast bioremediation processes. Rom Biotechnol Lett 15:5066–5071Google Scholar
  11. de Koning W, Harder W (1992) Methanol-utilizing yeasts. In: Murrell JC, Dalton H (eds) Methane and methanol utilizers. Springer US, Boston, pp 207–244.  https://doi.org/10.1007/978-1-4899-2338-7_7CrossRefGoogle Scholar
  12. Fang Z, Chen Z, Wang S, Shi P, Shen Y, Zhang Y, Xiao J, Huang Z (2017) Overexpression of OLE1 enhances cytoplasmic membrane stability and confers resistance to cadmium in Saccharomyces cerevisiae. Appl Environ Microbiol 83:e02319–e02316CrossRefGoogle Scholar
  13. Gellissen G, Melber K (1996) Methylotrophic yeast hansenula polymorpha as production organism for recombinant pharmaceuticals. Arzneimittelforschung 46:943–948PubMedGoogle Scholar
  14. Hartner FS, Glieder A (2006) Regulation of methanol utilisation pathway genes in yeasts. Microb Cell Factories 5:39CrossRefGoogle Scholar
  15. Hong J, Park S-H, Kim S, Kim S-W, Hahn J-S (2019) Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production. Appl Microbiol Biotechnol 103:211–223CrossRefGoogle Scholar
  16. Kaszycki P, Koloczek H (2002) Biodegradation of formaldehyde and its derivatives in industrial wastewater with methylotrophic yeast Hansenula polymorpha and with the yeast-bioaugmented activated sludge. Biodegradation 13:91–99CrossRefGoogle Scholar
  17. Kaszycki P, Tyszka M, Malec P, Kołoczek H (2001) Formaldehyde and methanol biodegradation with the methylotrophic yeast Hansenula polymorpha. An application to real wastewater treatment. Biodegradation 12:169–177CrossRefGoogle Scholar
  18. Kaszycki P, Czechowska K, Petryszak P, Miedzobrodzki J, Pawlik B, Koloczek H (2006) Methylotrophic extremophilic yeast Trichosporon sp.: a soil-derived isolate with potential applications in environmental biotechnology. Acta Biochim Pol 53:463PubMedGoogle Scholar
  19. Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Volume 2: perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64.  https://doi.org/10.1007/978-3-030-14846-1_1CrossRefGoogle Scholar
  20. Kumar M, Kour D, Yadav AN, Saxena R, Rai PK, Jyoti A, Tomar RS (2019) Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia 74:287–308CrossRefGoogle Scholar
  21. Kurtzman CP (2009) Biotechnological strains of Komagataella (Pichia) pastoris are Komagataellaphaffii as determined from multigene sequence analysis. J Ind Microbiol Biotechnol 36:1435CrossRefGoogle Scholar
  22. Kurtzman CP, Robnett CJ (2010) Systematics of methanol assimilating yeasts and neighboring taxa from multigene sequence analysis and the proposal of Peterozyma gen. nov., a new member of the Saccharomycetales. FEMS Yeast Res 10:353–361CrossRefGoogle Scholar
  23. Kurtzman CP, Robnett CJ, Basehoar-Powers E (2008) Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 8:939–954CrossRefGoogle Scholar
  24. Kuroda K, Ueda M (2011) Cell surface engineering of yeast for applications in white biotechnology. Biotechnol Lett 33:1–9Google Scholar
  25. Leão-Helder AN, Krikken AM, Van der Klei IJ, Kiel JA, Veenhuis M (2003) Transcriptional down-regulation of peroxisome numbers affects selective peroxisome degradation in Hansenula polymorpha. J Biol Chem 278:40749–40756CrossRefGoogle Scholar
  26. Limtong S, Srisuk N, Yongmanitchai W, Yurimoto H, Nakase T, Kato N (2005) Pichia thermomethanolica sp. nov., a novel thermotolerant, methylotrophic yeast isolated in Thailand. Int J Syst Evol Microbiol 55:2225–2229.  https://doi.org/10.1099/ijs.0.63712-0CrossRefPubMedGoogle Scholar
  27. Limtong S, Srisuk N, Yongmanitchai W, Yurimoto H, Nakase T (2008) Ogataea chonburiensis sp. nov. and Ogataea nakhonphanomensis sp. nov., thermotolerant, methylotrophic yeast species isolated in Thailand, and transfer of Pichia siamensis and Pichia thermomethanolica to the genus Ogataea. Int J Syst Evol Microbiol 58:302–307CrossRefGoogle Scholar
  28. Lin-Cereghino GP, Godfrey L, Bernard J, Johnson S, Khuongsathiene S, Tolstorukov I, Yan M, Lin-Cereghino J, Veenhuis M, Subramani S (2006) Mxr1p, a key regulator of the methanol utilization pathway and peroxisomal genes in Pichia pastoris. Mol Cell Biol 26:883–897CrossRefGoogle Scholar
  29. Lu Y-F, Wang M, Zheng J, Hui F-L (2017) Ogataea neixiangensis sp. nov. and Ogataea paraovalis fa, sp. nov., two methanol-assimilating yeast species isolated from rotting wood. Int J Syst Evol Microbiol 67:3038–3042CrossRefGoogle Scholar
  30. Meena KK, Kumar M, Kalyuzhnaya MG, Yandigeri MS, Singh DP, Saxena AK, Arora DK (2012) Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwenhoek 101:777–786CrossRefGoogle Scholar
  31. Mitsui R, Kusano Y, Yurimoto H, Sakai Y, Kato N, Tanaka M (2003) Formaldehyde fixation contributes to detoxification for growth of a nonmethylotroph, Burkholderia cepacia TM1, on vanillic acid. Appl Environ Microbiol 69:6128–6132CrossRefGoogle Scholar
  32. Morais PB, Teixeira LC, Bowles JM, Lachance M-A, Rosa CA (2004) Ogataea falcaomoraisii sp. nov., a sporogenous methylotrophic yeast from tree exudates. FEMS Yeast Res 5:81–85CrossRefGoogle Scholar
  33. Nakagawa T, Mukaiyama H, Yurimoto H, Sakai Y, Kato N (1999) Alcohol oxidase hybrid oligomers formed in vivo and in vitro. Yeast 15:1223–1230CrossRefGoogle Scholar
  34. Nakagawa T, Miyaji T, Yurimoto H, Sakai Y, Kato N, Tomizuka N (2000) A methylotrophic pathway participates in pectin utilization by Candida boidinii. Appl Environ Microbiol 66:4253–4257CrossRefGoogle Scholar
  35. Nakase T, Imanishi Y, Ninomiya S, Takashima M (2010) Candida rishirensis sp. nov., a novel methylotrophic anamorphic yeast species isolated from soil on Rishiri Island in Japan. J Gen Appl Microbiol 56:169–173CrossRefGoogle Scholar
  36. Naumov GI, Naumova ES, Lee C-F (2017) Ogataea haglerorum sp. nov., a novel member of the species complex, Ogataea (Hansenula) polymorpha. Int J Syst Evol Microbiol 67:2465–2469CrossRefGoogle Scholar
  37. Naumov G, Shalamitskiy MY, Naumova E, Lee C-F (2018) Phylogenetics, biogeography, and ecology of methylotrophic yeasts of the heterogeneous genus Ogataea: achivements and prospects. Microbiology 87:443–452CrossRefGoogle Scholar
  38. Negruţă O, Csutak O, Stoica I, Rusu E, Vassu T (2010) Methylotrophic yeasts: diversity and methanol metabolism. Rom Biotechnol Lett 15:5369–5375Google Scholar
  39. Ohsawa S, Nishida S, Oku M, Sakai Y, Yurimoto H (2018) Ethanol represses the expression of methanol-inducible genes via acetyl-CoA synthesis in the yeast Komagataella phaffii. Sci Rep 8:18051CrossRefGoogle Scholar
  40. Okonechnikov K, Golosova O, Fursov M, Team U (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167CrossRefGoogle Scholar
  41. Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44:2636–2639CrossRefGoogle Scholar
  42. Péter G, Tornai-Lehoczki J, Dlauchy D (2008) Ogataea nitratoaversa sp. nov., a methylotrophic yeast species from temperate forest habitats. Antonie Van Leeuwenhoek 94:217CrossRefGoogle Scholar
  43. Phithakrotchanakoon C, Puseenam A, Phaonakrop N, Roytrakul S, Tanapongpipat S, Roongsawang N (2018) Hac1 function revealed by the protein expression profile of a OtHAC1 mutant of thermotolerant methylotrophic yeast Ogataea thermomethanolica. Mol Biol Rep 45:1311–1319CrossRefGoogle Scholar
  44. Pozzolini M, Scarfì S, Mussino F, Salis A, Damonte G, Benatti U, Giovine M (2015) Pichia pastoris production of a prolyl 4-hydroxylase derived from Chondrosia reniformis sponge: a new biotechnological tool for the recombinant production of marine collagen. J Biotechnol 208:28–36CrossRefGoogle Scholar
  45. Prasitchoke P, Kaneko Y, Bamba T, Fukusaki E, Kobayashi A, Harashima S (2007) Identification and characterization of a very long-chain fatty acid elongase gene in the methylotrophic yeast, Hansenula polymorpha. Gene 391:16–25CrossRefGoogle Scholar
  46. Puseenam A, Kocharin K, Tanapongpipat S, Eurwilaichitr L, Ingsriswang S, Roongsawang N (2018) A novel sucrose-based expression system for heterologous proteins expression in thermotolerant methylotrophic yeast Ogataea thermomethanolica. FEMS Microbiol Lett 365:238CrossRefGoogle Scholar
  47. Rana KL, Kour D, Yadav AN (2018) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:1–30Google Scholar
  48. Rastegari AA, Yadav AN, Gupta A (2019) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, ChamCrossRefGoogle Scholar
  49. Ravin NV, Eldarov MA, Kadnikov VV, Beletsky AV, Schneider J, Mardanova ES, Smekalova EM, Zvereva MI, Dontsova OA, Mardanov AV (2013) Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1. BMC Genomics 14:837CrossRefGoogle Scholar
  50. Řezanka T, Lukavský J, Vítová M, Nedbalová L, Sigler K (2018) Lipidomic analysis of Botryococcus (Trebouxiophyceae, Chlorophyta)-identification of lipid classes containing very long chain fatty acids by offline two-dimensional LC-tandem MS. Phytochemistry 148:29–38CrossRefGoogle Scholar
  51. Sahu U, Rao KK, Rangarajan PN (2014) Trm1p, a Zn (II) 2Cys6-type transcription factor, is essential for the transcriptional activation of genes of methanol utilization pathway, in Pichia pastoris. Biochem Biophys Res Commun 451:158–164CrossRefGoogle Scholar
  52. Sakai Y, Nakagawa T, Shimase M, Kato N (1998) Regulation and physiological role of theDAS1 gene, encoding dihydroxyacetone synthase, in the methylotrophic yeast Candida boidinii. J Bacteriol 180:5885–5890PubMedPubMedCentralGoogle Scholar
  53. Smutok O, Broda D, Smutok H, Dmytruk K, Gonchar M (2011) Chromate-reducing activity of Hansenula polymorpha recombinant cells over-producing flavocytochrome b2. Chemosphere 83:449–454CrossRefGoogle Scholar
  54. Suh S-O, Zhou JJ (2010) Methylotrophic yeasts near Ogataea (Hansenula) polymorpha: a proposal of Ogataea angusta comb. nov. and Candida parapolymorpha sp. nov. FEMS Yeast Res 10:631–638PubMedGoogle Scholar
  55. Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer-Verlag, New Delhi, pp 117–143.  https://doi.org/10.1007/978-81-322-2647-5_7CrossRefGoogle Scholar
  56. Tani Y, Yamada K (1987) Diversity in glycerol metabolism of methylotrophic yeasts. FEMS Microbiol Lett 40:151–153CrossRefGoogle Scholar
  57. Tschopp JF, Brust PF, Cregg JM, Stillman CA, Gingeras TR (1987) Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res 15:3859–3876CrossRefGoogle Scholar
  58. van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M (2006) The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim Biophys Acta 1763:1453–1462CrossRefGoogle Scholar
  59. Veenhuis M, Van Der Klei I, Titorenko V, Harder W (1992) Hansenula polymorpha: an attractive model organism for molecular studies of peroxisome biogenesis and function. FEMS Microbiol Lett 100:393–403CrossRefGoogle Scholar
  60. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2013) Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci 10:219–227Google Scholar
  61. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol App Sci 3:432–447Google Scholar
  62. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015a) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899CrossRefGoogle Scholar
  63. Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015b) Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30, an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110Google Scholar
  64. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016a) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58CrossRefGoogle Scholar
  65. Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2016b) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci.  https://doi.org/10.1016/j.sjbs.2016.01.042
  66. Wang X, Wang Q, Wang J, Bai P, Shi L, Shen W, Zhou M, Zhou X, Zhang Y, Cai M (2016) Mit1 transcription factor mediates methanol signaling and regulates the alcohol oxidase 1 (AOX1) promoter in Pichia pastoris. J Biol Chem 291:6245–6261CrossRefGoogle Scholar
  67. Yadav AN (2009) Studies of Methylotrophic Community from the phyllosphere and rhizosphere of tropical crop plants. M.Sc. Thesis, Bundelkhand University, pp 66,  https://doi.org/10.13140/2.1.5099.0888
  68. Yadav AN (2015) Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. Ph.D. Thesis, IARI, New Delhi/BIT, Ranchi pp 234,  https://doi.org/10.13140/RG.2.1.2948.1283/2
  69. Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious pgp attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4Google Scholar
  70. Yadav AN, Saxena AK (2018) Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J Appl Biol Biotechnol 6:1–8Google Scholar
  71. Yadav AN, Yadav N (2018) Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Sci Agric 2:85–88Google Scholar
  72. Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693CrossRefGoogle Scholar
  73. Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108CrossRefGoogle Scholar
  74. Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Prasanna R, Saxena AK (2015c) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629CrossRefGoogle Scholar
  75. Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150PubMedGoogle Scholar
  76. Yadav A, Verma P, Kumar R, Kumar V, Kumar K (2017) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22Google Scholar
  77. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18.  https://doi.org/10.1016/B978-0-444-63501-3.00001-6CrossRefGoogle Scholar
  78. Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi Volume 1: diversity and enzymes perspectives. Springer International Publishing, ChamCrossRefGoogle Scholar
  79. Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer International Publishing, ChamCrossRefGoogle Scholar
  80. Yadav AN, Yadav N, Sachan SG, Saxena AK (2019c) Biodiversity of psychrotrophic microbes and their biotechnological applications. J Appl Biol Biotechnol. Online firstGoogle Scholar
  81. Yamada Y, Maeda K, Mikata K (1994) The phylogenetic relationships of the hat-shaped ascospore-forming, nitrate-assimilating Pichia species, formerly classified in the genus Hansenula Sydow et Sydow, based on the partial sequences of 18S and 26S ribosomal RNAs (Saccharomycetaceae): the proposals of three new genera, Ogataea, Kuraishia, and Nakazawaea. Biosci Biotechnol Biochem 58:1245–1257CrossRefGoogle Scholar
  82. Yamashita S, Yurimoto H, Murakami D, Yoshikawa M, Oku M, Sakai Y (2009) Lag-phase autophagy in the methylotrophic yeast Pichia pastoris. Genes Cells 14:861–870CrossRefGoogle Scholar
  83. Yoo SJ, Moon HY, Kang HA (2019) Screening and selection of production strains: secretory protein expression and analysis in Hansenula polymorpha. In: Gasser B, Mattanovich D (eds) Recombinant protein production in yeast. Springer New York, New York, pp 133–151CrossRefGoogle Scholar
  84. Young EM, Comer AD, Huang H, Alper HS (2012) A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Metab Eng 14:401–411CrossRefGoogle Scholar
  85. Yurimoto H, Sakai Y, Kato N (2002) Methanol metabolism. In: Gellissen G (ed) Hansenula polymorpha.  https://doi.org/10.1002/3527602356.ch5CrossRefGoogle Scholar
  86. Yurimoto H, Oku M, Sakai Y (2011) Yeast methylotrophy: metabolism, gene regulation and peroxisome homeostasis. Int J Microbiol 2011:101298CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Manish Kumar
    • 1
  • Raghvendra Saxena
    • 1
  • Pankaj Kumar Rai
    • 2
  • Rajesh Singh Tomar
    • 1
  • Neelam Yadav
    • 3
  • Kusam Lata Rana
    • 4
  • Divjot Kour
    • 4
  • Ajar Nath Yadav
    • 4
    Email author
  1. 1.Amity Institute of Biotechnology, Amity UniversityGwaliorIndia
  2. 2.Department of BiotechnologyInvertis UniversityBareillyIndia
  3. 3.Gopi Nath P.G. College, Veer Bahadur Singh Purvanchal UniversityDeoli-Salamatpur, GhazipurIndia
  4. 4.Department of BiotechnologyAkal College of Agriculture, Eternal University, Baru SahibHimachal PradeshIndia

Personalised recommendations