Advertisement

Bioconversion of Biomass to Biofuel Using Fungal Consortium

  • Pavana Jyothi Cherukuri
  • Rajani Chowdary Akkina
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Depletion of fossil fuel resources along with their disadvantages including greenhouse gas emission, pollution, price enhancement, and increased demand of fuel leads to search for alternative fuel sources from renewable substrates. One of the major bottlenecks of global economy as well as environment sustainability is an urgent requirement for alternative fuel production and climate alteration diminution. Bioconversion of lignocellulosic biomass into biofuels is an unavoidable necessity for development of green economy. Biorefining of lignocellulosic biomass provides sustainable development of socioeconomic strategies. Low-value lignocellulose biomass (weed, by-products of wood, agro-residues, and recycle paper) is a favorable resource over traditional substrates. The biofuel production from lignocelluloses biomass by fungal consortium is cost-effective and eco-friendly process. Lignocellulosic plant sources consist of lignin, cellulose, and hemicellulose in various proportions. The hydrolysis of these polymeric components by fungal enzymes is a promising green approach. The development of fungal consortium and selection of microbial strains are a concern in this process. The fungal consortium composed of complex and diversified strains include cellulase, laccase, and xylanase enzyme-producing fungal strains along with ethanol-producing strains. Potential degradation of whole lignocellulosic substrates is possible by white-rot fungi. White-rot fungi is ubiquitous in nature; various strains including Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus, Cyathus stercoreus, etc. are significant strains for lignin degradation. Several advantages were reported by fungal consortium for biofuel (ethanol) production with high productivity and sustainable approach for solid waste management by green technology.

Keywords

Biofuel Biomass Ethanol Fungal consortium Lignocellulose White-rot fungi 

Notes

Acknowledgments

Authors sincerely acknowledge University Grant Commission (UGC), Government of India, for providing financial support for major research project entitled “Overcoming fossil fuel challenges: Co-culture fermentations for biofuel production using agro-industrial waste materials.”

References

  1. Agbogbo FK, Wenger KS (2007) Production of ethanol from corn Stover hemicellulose hydrolyzate using Pichia stipitis. J Ind Microbiol Biotechnol 34:723–727CrossRefGoogle Scholar
  2. Balan V, Chiaramonti D, Kumar S (2013) Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels. Biofuels Bioprod Biorefin 7:732–759CrossRefGoogle Scholar
  3. Bacovsky D, Mabee W, Worgetter M (2010) How close are second-generation biofuels. Biofuels Bioprod Bioref 4:249–252Google Scholar
  4. Barakat A, Rouau X (2014) New dry technology of environmentally friendly biomass refinery: glucose yield and energy efficiency. Biotechnol Biofuels 7:138CrossRefGoogle Scholar
  5. Benimelia CS, Castroa GR, Chailec AP, Amoroso MJ (2007) Lindane uptake and degradation by aquatic Streptomyces sp. strain M7. Int Biodeterior Biodegradation 59:148–155CrossRefGoogle Scholar
  6. Binod P, Janu KU, Sindhu R, Padey A (2010) Hydrolysis of lignocellulosic biomass for bioethanol production. In: Ashok P, Christian L, Ricke SC (eds) Biofuels: alternative Feedstock’s and conversion processes. Elsevier Inc, pp 229–250Google Scholar
  7. Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19:797–841CrossRefGoogle Scholar
  8. Bradley C, Wood P, Kearns R, Black B (1989) Biological delignification of wood and straw for ethanol production via solid state culture. Final report, Montana Department of Natural Resources and Conservation, MontanaGoogle Scholar
  9. Buruiana CT, Garrote G, Vizireanu C (2013) Bioethanol production from residual lignocellulosic materials: a review-Part-1. Food Technol 37:9–24Google Scholar
  10. Cabuk A, Unal AT, Kolankaya N (2006) Biodegradation of cyanide by a white rot fungus, Trametes versicolor. Biotechnol Lett 28:1313–1317CrossRefGoogle Scholar
  11. Campbell CJ, Laherrere JH (1998) The end of cheap oil. Sci Am 3:78–83CrossRefGoogle Scholar
  12. Cheng KK, Zhang JA, Chave ZE, Li JP (2010) Integrated production of xylitol and ethanol using corn cob. Appl Microbiol Biotechnol 87:411–417Google Scholar
  13. Chen S, Zhang X, Singh D, Yu H, Yang X (2010) Biological pre-treatment of lignocellulosics: potential, progress and challenges. Biofuelss 1:177–199CrossRefGoogle Scholar
  14. Claudio M, Jaime B, Juanita F, Regis T (2011) Mendonca bioethanol production from tension and opposite wood of Eucalyptus globulus using organosolv pretreatment. J Ind Microbiol Biotechnol 38:1861–1866CrossRefGoogle Scholar
  15. Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG et al (2015) Lignocellulose degradation mechanism across the tree of life. Curr Opin Chem Biol 29:108–119CrossRefGoogle Scholar
  16. Daassi D, Zouri-Mechichi H, Frikha F, Rodriguez-Couto S, Nasri M, Mechichi T (2016) Sawdust waste as a low-cost support substrate for laccases production and adsorbent for azo dyes decolorization. J Environ Health Sci Eng 14:1–12CrossRefGoogle Scholar
  17. Das H, Singh SK (2004) Useful by products from cellulosic wastes of agriculture and food industry-a critical appraisal. Crit Rev Food Sci Nutr 44:77–89CrossRefGoogle Scholar
  18. Delfin AI, Duran de bazúa C (2003) Biodegradación de residuos urbanos lignocelulósicos por Pleurotus. Rev Int Contam Ambient 19:37–45Google Scholar
  19. Du W, Yu H, Song L, Zhang J, Weng C, Ma F, Zhang X (2011) The promising effects of by-products from Irpex lacteus on subsequent enzymatic hydrolysis of bio-pretreated corn stalks. Biotechnol Biofuels 4:37CrossRefGoogle Scholar
  20. Dumonceaux T, Bartholomew K, Valeanu L, Charles T, Archibald F (2001) Cellobiose dehydrogenase is essential for wood invasion by nonessential for Kraft pulp delignification and Trametes versicolor. Enzym Microb Technol 29:478–489CrossRefGoogle Scholar
  21. Fernández-Martín R, Domenech C, Cerdá-Olmedo E, Avalos J (2007) Ent-Kaurene and squalene synthesis in Fusarium fujikuroi cell-free extracts. Phytochemistry 54:723–728CrossRefGoogle Scholar
  22. Gao Z, Mori T, Kondo R (2012) The pretreatment of corn Stover with Gloeophyllum trabeum KU-41 for enzymatic hydrolysis. Biotechnol Biofuels 5:28CrossRefGoogle Scholar
  23. Ghorbani F, Karimi M, Biria D, Kariminia HR, Jeihanipour A (2015) Enhancement of fungal delignification of Rice Straw by Trichoderma viride sp. to improve its saccharification. Biochem Eng J 101:77–84CrossRefGoogle Scholar
  24. Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93CrossRefGoogle Scholar
  25. Hatakka AI (1983) Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose. Appl Microbiol Biotechnol 18:350–357CrossRefGoogle Scholar
  26. Heinzkill M (1998) Characterization of laccases and peroxidases from wood rotting fungi. Appl Envion Microbiol 64:1601–1606Google Scholar
  27. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103(30):11206–11210CrossRefGoogle Scholar
  28. Homma H, Shinoyama H, Nobuta Y, Terashima Y, Amachi S, Fujii T (2007) Lignin-degrading activity of edible mushroom Strobilurus ohshimae that forms fruiting bodies on buried soil (Cryptomeria japonica) twigs. J Wood Sci 53:80–84CrossRefGoogle Scholar
  29. Jeffries TW, Grigoriev IV, Grim Wood J, Laplaza JM, Aerts A, Salamov A (2007) Genome sequence of the lignocellulose-bioconverting and xylose fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326CrossRefGoogle Scholar
  30. Jian S, Ratna R, Sharma-Shivappa CM, Howell N (2008) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy 33:88–96Google Scholar
  31. Jonsson LJ, Martin C (2016) Pretreatment of lignocelluloses: formation of inhibitory by products and strategies for minimizing their effects. Bioresour Technol 199:103–112CrossRefGoogle Scholar
  32. Kim S and Dale BE (2004) Global potential bioethanol production form wasted crops and crop residues. Biomass Bioenergy 26:361–375Google Scholar
  33. Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Forest Genet Biol 44:77–87CrossRefGoogle Scholar
  34. Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Volume 2: perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64.  https://doi.org/10.1007/978-3-030-14846-1_1CrossRefGoogle Scholar
  35. Kuijk SJA, Sonnenberg ASM, Baars JJP, Hendriks WH, Cone JW (2015) Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review. Biotechnol Adv 33:191–202CrossRefGoogle Scholar
  36. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current prospectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467CrossRefGoogle Scholar
  37. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642CrossRefGoogle Scholar
  38. Liu S, Li X, Wu S, He J, Pang C, Deng Y, Dong R (2014) Fungal pre-treatment by Phanerochaete chrysosporium for enhancement of biogas production from corn Stover silage. Appl Biochem Biotechnol 174:1907–1918CrossRefGoogle Scholar
  39. Marnyye A, Velásquez C, Mata G, Michel SJ (2002) Waste-reducing cultivation of Pleurotus ostreatus and Pleurotus pulmonarius on coffee pulp: changes in the production of some lignocellulolytic enzymes. World J Microbiol Biotechnol 18:201–207CrossRefGoogle Scholar
  40. Márquez ATA, Mendoza MGD, González MSS (2007) Actividad fibrolitica de enzimas producidas por Trametes sp. EUM1, Pleurotus ostreatus IE8 y Aspergillus niger AD96.4 en fermentation solida. Interciencia 32:780–785Google Scholar
  41. Mc. Millan JD (1997) Biomass conversion bioethanol production: status and prospects. Renew Energy 10(2):295–302CrossRefGoogle Scholar
  42. Mikan VJF, Castellanos SDE (2004) Screening for isolation and characterisation of microorganisms and enzymes with useful potential for degradation of cellulose and hemicellulose. Rev Colomb Biotechnol 6:58–67Google Scholar
  43. Millati IR, Syamisiah S, Nikalasson C, Cahyanto MN, Lundquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white rot fungi and its applications: a review. Bioresources 6:5224Google Scholar
  44. Moilanen U, Winquist E, Mattila T, Hatakka A, Eerikainen T (2015) Production of manganese peroxidase and laccase in solid state bioreactor and modeling of enzyme production kinetics. Bioprocess Biosyst Eng 28:57–68CrossRefGoogle Scholar
  45. Moredo N, Lorenzo M, Domínguez A, Moldes D, Cameselle C, Sanroman A (2003) Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor. World J Microbiol Biotechnol 19:665–669CrossRefGoogle Scholar
  46. Mustafa AM, Poulsen TG, Sheng K (2016) Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid state anaerobic digestion. Appl Energy 180:661–671CrossRefGoogle Scholar
  47. Nigam P, Pandey A (2009) Solid-state fermentation technology for bioconversion of biomass and agricultural residues. In: Biotechnology for agro-industrial residues utilization. Springer Netherlands, pp 197–221Google Scholar
  48. Okamoto K, Narayama S, Katsuo A, Shigemat sui I, Yanase H (2002) Biosynthesis of p-anisaldehyde by the white-rot basidiomycete Pleurotus ostreatus. J Biosci Bioeng 93:207–210CrossRefGoogle Scholar
  49. Park YS, Kang SW, Lee JS, Hong SI, Kim SW (2002) Xylanase production in solid state fermentation by Aspergillus Niger mutant using statistical experimental design. Appl Microbiol Biotechnol 58:762–766Google Scholar
  50. Pankajkumar RW, Rahul VK, Byong-Hun Jeon, Sanjay PG (2018) Enzymatic hydrolysis of biologically pretreated sorghum husk for bioethanol production. Biofuel Res J 5(3):846–853Google Scholar
  51. Pereira SR, Portugal-Nunes DJ, Evtuguin DV, Serafim LS, Xavier AMRB (2013) Advances in ethanol production from hard wood spent sulphite liquors. Process Biochem 48:272–282CrossRefGoogle Scholar
  52. Phutela UG, Sahni N (2012) Effect of Fusarium sp. on Paddy Straw digestibility and biogas production. J Adv Lab Res Biol 3:9–12Google Scholar
  53. Quintero DJC, Gumersindo FEJOOC, Lemar RJM (2006) Production of ligninolytic enzymes from basidiomycete fungi on lignocellulosic materials. Rev Facult Quim Farmaceut 13:61–67Google Scholar
  54. Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK (2019a) Endophytic fungi: biodiversity, ecological significance, and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi: Volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham, pp 1–62.  https://doi.org/10.1007/978-3-030-10480-1_1CrossRefGoogle Scholar
  55. Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144.  https://doi.org/10.1007/978-3-030-03589-1_6CrossRefGoogle Scholar
  56. Rastegari AA, Yadav AN, Gupta A (2019) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, ChamCrossRefGoogle Scholar
  57. Rezacova V, Hrselova H, Gryndlerová H, Mikšık I, Gryndler M (2006) Modifications of degradation-resistant soil organic matter by soil saprobic microfungi. Soil Biol Biochem 38:2292–2299CrossRefGoogle Scholar
  58. Rodriguez J, Ferraz A, Nogueira FPR, Ferrer I, Esposito E, Duran N (1997) Lignin biodegradation by the ascomycete Chrysonilia sitophila. Appl Biochem Biotechnol 63:233–242CrossRefGoogle Scholar
  59. Sanchez O, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feed stocks. Bioresour Technol 3:5270–5295Google Scholar
  60. Singh P, Suman A, Tiwari P, Arya N, Gaur A, Shrivastava AK (2008) Biological pretreatment of sugar cane trash for its conversion to fermentable sugars. World J Microbiol Biotechnol 24:667–673.  https://doi.org/10.1007/s11274-007-9522-4CrossRefGoogle Scholar
  61. Songulashvili G, Elisashvili V, Penninckx M, Metreveli E, Hadar Y, Aladashvili N, Asatiani M (2005) Bioconversion of plant raw materials in value added products by Lentinus edodes (Berk.) Singer and Pleurotus spp. Int J Med Mushrooms 7(3):467–468CrossRefGoogle Scholar
  62. Sreenivas Rao R, Pavana Jyothi C, Prakasham RS, Sarma PN, Venkatestwar Rao L (2006) Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresour Technol 97:1974–1978CrossRefGoogle Scholar
  63. Srinivasan C, Dsouza TM, Boominathan K, Reddy CA (1995) Demonstration of laccase in white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl Environ Microbiol 6:4274–4277Google Scholar
  64. Steven RW, Lee H (1990) Regulation of D-xylose utilization by hexoses in pentose fermenting yeasts. Biotechnol Adv 8(4):685–697CrossRefGoogle Scholar
  65. Tabassum Ansari F, Choube A (2012) Impact of biofuel in petrol engine-a review. Int J Thermal Technol 2(2):ISSN2277-4114Google Scholar
  66. Tampier M, Smith D, Bibeau E, Beauchemin PA (2004) Identifying environmental preferable uses for biomass resources, http://www.cec.org/giles/PDF/ECONOMY/Biomass-Stage-I-II_en.pdf
  67. Tong P, Hong Y, Xiao Y, Zhang M, Tu X, Cui T (2007) High production of laccase by a new basidiomycete, Trametes sp. Biotechnol Lett 29:295–301CrossRefGoogle Scholar
  68. Villagran F, Renan J (1991) Simulación y modelo matemático de la delignification selective de la madera por hongos blancos en ambient natural. Temuco Universidad de la Frontera 24:465–487Google Scholar
  69. Voberkova S, Solcany V, Vrsanska M, Adam V (2018) Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates. Chemosphere 202:694CrossRefGoogle Scholar
  70. Wan C, Li Y (2010) Microbial pre treatment of corn Stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour Technol 101:6398–6403CrossRefGoogle Scholar
  71. Wan C, Li Y (2011) Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feed stocks. Bioresour Technol 102:7507–7512CrossRefGoogle Scholar
  72. Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187Google Scholar
  73. Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307CrossRefGoogle Scholar
  74. Yadav A, Verma P, Kumar R, Kumar V, Kumar K (2017) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22Google Scholar
  75. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18.  https://doi.org/10.1016/B978-0-444-63501-3.00001-6CrossRefGoogle Scholar
  76. Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi Volume 1: diversity and enzymes perspectives. Springer International Publishing, ChamCrossRefGoogle Scholar
  77. Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer International Publishing, ChamCrossRefGoogle Scholar
  78. Yewale T, Panchwagh S, Rajagopalan S, Dhamole PB, Jain R (2016) Enhanced xylitol production using immobilized Candida tropicalis with non-detoxified corn cob hemicellulosic hydrolysate. 3 Biotech 6:75CrossRefGoogle Scholar
  79. Yu Y, Feng Y, Xu C, Liu J, Li D (2011) Onsite biodetoxification of steam exploded corn Stover for cellulosic ethanol production. Bioresour Technol.  https://doi.org/10.1016/j.biortech.2011.01.067
  80. Zhang Z, Donaldson AA, Ma X (2012) Advancements and future directions in enzyme technology for biomass conversion. Biotechnol Adv 35:367–375Google Scholar
  81. Zhang LY, Xia L, Liu Z, Pu Y (2014) Enhanced xylitol production from statistically optimized fermentation of corn stalk hydrolysate by immobilized Candida tropicalis. Chem Biochem Eng 28:87–93Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pavana Jyothi Cherukuri
    • 1
  • Rajani Chowdary Akkina
    • 1
  1. 1.Department of Microbiology & Food Science and TechnologyInstitute of Science, GITAM (Deed to be University)VisakhapatnamIndia

Personalised recommendations