Advertisement

Secretomics of Wood-Degrading Fungi and Anaerobic Rumen Fungi Associated with Biodegradation of Recalcitrant Plant Biomass

  • Nasib Singh
  • Joginder Singh
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

The lignocellulose-rich plant biomass is a readily available renewable resource having immense potential to be utilized as a sustainable alternative to ever-limiting fossil fuels. It, however, resists abiotic and biotic degradation due to its complex, recalcitrant, and intricate structure comprising primarily of lignocellulose. Interestingly, few specific microbial groups have evolved unparalleled capabilities to degrade and utilize these recalcitrant biopolymers through highly coordinated and genetically evolved enzymatic processes. Of these, wood-degrading fungi and anaerobic rumen fungi are endowed with exceptional enzymatic capabilities. White rot fungi, brown rot fungi, anaerobic rumen fungi, termite gut wood-decaying fungi, and other related fungi are considered as the major natural biomass utilization systems displaying immense contributions for degradation and mineralization of recalcitrant plant biomass in an array of terrestrial habitats. Several fungal species from phyla Basidiomycota, Neocallimastigomycota, and Ascomycota mainly Phanerochaete chrysosporium, Postia placenta, Neocallimastix spp., Orpinomyces, Gloeophyllum trabeum, Trametes versicolor, Agaricus bisporus, Pleurotus ostreatus, Serpula lacrimans, and many others are capable of degrading plant cell wall constituents through secretion of hydrolytic and oxidative enzymes, collectively called carbohydrate-active enzymes (CAZymes). These enzymes are broadly classified into glycoside hydrolases (GHs), carbohydrate esterases (CEs), glycosyltransferases (GTs), polysaccharide lyases (PLs), auxiliary activities (AAs), and lytic polysaccharide monooxygenases (LPMOs). The most crucial enzymes in lignocellulose degradation are β-glucosidases, glucanases, cellobiohydrolases, xylanases, endomannanases, feruloyl esterases, laccases, lignin peroxidases, manganese peroxidases, versatile peroxidases, etc. Comparative secretome studies elucidated considerable variations in lignocellulolytic enzyme repertoire of white rot fungi, brown rot fungi, and rumen fungi. In this chapter, we discuss the fungal secretomes associated with degradation of plant matter by wood-decaying fungi and anaerobic rumen fungi. A greater insight on their remarkable enzymatic capabilities is poised to open new avenues for their future biotechnological applications in the areas of animal nutrition, biofuel, biorefinery, and bioremediation.

Keywords

Anaerobic rumen fungi Carbohydrate-active enzymes Cellulose Glycoside hydrolases Phanerochaete chrysosporium Secretome White rot fungi 

Notes

Acknowledgments

NS is grateful to The Chancellor, Eternal University, for their financial support and infrastructural facilities. The authors are thankful to Dr. Sumit Singh Dagar for his valuable and expert suggestions.

References

  1. Adesogan AT, Arriola KG, Jiang Y, Oyebade A, Paula EM, Pech-Cervantes AA, Romero JJ, Ferraretto LF, Vyas D (2019) Symposium review: technologies for improving fiber utilization. J Dairy Sci S0022-0302:30295–30294.  https://doi.org/10.3168/jds.2018-15334CrossRefGoogle Scholar
  2. Baldrian P, Valaskova V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521.  https://doi.org/10.1111/j.1574-6976.2008.00106.xCrossRefPubMedGoogle Scholar
  3. Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH (2018) Oxidoreductases and reactive oxygen species in conversion of lignocellulosic biomass. Microbiol Mol Biol Rev 82:e00029–18.  https://doi.org/10.1128/MMBR.00029-18CrossRefPubMedPubMedCentralGoogle Scholar
  4. Blanchette R (1991) Delignification by wood-decay fungi. Annu Rev Phytopathol 29:381–398.  https://doi.org/10.1146/annurev.py.29.090191.002121CrossRefGoogle Scholar
  5. Bouws H, Wattenberg A, Zorn H (2008) Fungalsecretomes-nature’s toolbox for white biotechnology. Appl Microbiol Biotechnol 80:381–388.  https://doi.org/10.1007/s00253-008-1572-5CrossRefPubMedGoogle Scholar
  6. Brink DP, Ravi K, Lidén G, Gorwa-Grauslund MF (2019) Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database. Appl Microbiol Biotechnol 103:3979–4002.  https://doi.org/10.1007/s00253-019-09692-4CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28:1883–1896.  https://doi.org/10.1186/s12862-018-1229-7CrossRefPubMedGoogle Scholar
  8. Conesa A, Punt PJ, van Luijk N, van den Hondel CA (2001) The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 33:155–171.  https://doi.org/10.1006/fgbi.2001.1276CrossRefPubMedGoogle Scholar
  9. Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ (2015) Lignocellulose degradation mechanisms across the Tree of Life. Curr Opin Chem Biol 29:108–119.  https://doi.org/10.1016/j.cbpa.2015.10.018CrossRefPubMedGoogle Scholar
  10. dos Santos AC, Ximenes E, Kim Y, Ladisch MR (2018) Lignin-enzyme interactions in the hydrolysis of lignocellulosic biomass. Trends Biotechnol S0167-7799:30306–30308.  https://doi.org/10.1016/j.tibtech.2018.10.010CrossRefGoogle Scholar
  11. Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A et al (2011) The plant cell wall decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–765.  https://doi.org/10.1126/science.1205411CrossRefPubMedGoogle Scholar
  12. Edwards JE, Forster RJ, Callaghan TM, Dollhofer V, Dagar SS, Cheng Y et al (2017) PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: insights, challenges and opportunities. Front Microbiol 8:1657.  https://doi.org/10.3389/fmicb.2017.01657CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gall DL, Ralph J, Donohue TJ, Noguera DR (2017) Biochemical transformation of lignin for deriving valued commodities from lignocellulose. Curr Opin Biotechnol 45:120–126.  https://doi.org/10.1016/j.copbio.2017.02.015CrossRefPubMedGoogle Scholar
  14. Gaskell J, Blanchette RA, Stewart PE, BonDurant SS, Adams M, Sabat G, Kersten P, Cullen D (2016) Transcriptome and secretome analyses of the wood decay fungus Wolfiporia cocos support alternative mechanisms of lignocellulose conversion. Appl Environ Microbiol 82:3979–3987.  https://doi.org/10.1128/AEM.00639-16CrossRefPubMedPubMedCentralGoogle Scholar
  15. Girard V, Dieryckx C, Job C, Job D (2013) Secretomes: the fungal strike force. Proteomics 13:597–608.  https://doi.org/10.1002/pmic.201200282CrossRefPubMedGoogle Scholar
  16. Gruninger RJ, Nguyen TTM, Reid ID, Yanke JL, Wang P, Abbott DW, Tsang A, McAllister T (2018) Application of transcriptomics to compare the carbohydrate active enzymes that are expressed by diverse genera of anaerobic fungi to degrade plant cell wall carbohydrates. Front Microbiol 9:1581.  https://doi.org/10.3389/fmicb.2018.01581CrossRefPubMedPubMedCentralGoogle Scholar
  17. Guerriero G, Hausman J, Strauss J, Ertan H, Siddiqui KS (2015) Destructuring plant biomass: Focus on fungal and extremophilic cell wall hydrolases. Plant Sci 234:180–193. https://doi.org/10.1016/j.plantsci.2015.02.010
  18. Haitjema CH, Gilmore SP, Henske JK, Solomon KV, Groot R, Kuo A et al (2017) A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol 2:17087.  https://doi.org/10.1038/nmicrobiol.2017.87CrossRefPubMedGoogle Scholar
  19. Hooker CA, Lee KZ, Solomon KV (2019) Leveraging anaerobic fungi for biotechnology. Curr Opin Biotechnol 59:103–110.  https://doi.org/10.1016/j.copbio.2019.03.013CrossRefPubMedGoogle Scholar
  20. Hori C, Gaskell J, Igarashi K, Kersten P, Mozuch M, Samejima M, Cullen D (2014) Temporal alterations in the secretome of the selective ligninolytic fungus Ceriporiopsis subvermispora during growth on aspen wood reveal this organism’s strategy for degrading lignocellulose. Appl Environ Microbiol 80:2062–2070.  https://doi.org/10.1128/AEM.03652-13CrossRefPubMedPubMedCentralGoogle Scholar
  21. Janusz G, Pawlik A, Sulej J, Swiderska-Burek U, Jarosz-Wilkolazka A, Paszczynski A (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41:941–962.  https://doi.org/10.1093/femsre/fux049CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kameshwar AKS, Qin W (2018) Genome wide analysis reveals the extrinsic cellulolytic and biohydrogen generating abilities of Neocallimastigomycota fungi. J Genomics 6:74–87.  https://doi.org/10.7150/jgen.25648CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kameshwar AKS, Ramos LP, Qin W (2019) Metadata analysis approaches for understanding and improving the functional involvement of rumen microbial consortium in digestion and metabolism of plant biomass. J Genomics 7:31–45.  https://doi.org/10.7150/jgen.32164CrossRefPubMedPubMedCentralGoogle Scholar
  24. Krah F, Bässler C, Heibl C, Soghigian J, Schaefer H, Hibbett DS (2018) Evolutionary dynamics of host specialization in wood-decay fungi. BMC Evol Biol 18:119.  https://doi.org/10.1186/s12862-018-1229-7CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kuuskeri J, Häkkinen M, Laine P, Smolander OP, Tamene F, Miettinen S, Nousiainen P, Kemell M, Auvinen P, Lundell T (2016) Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose. Biotechnol Biofuels 9:192.  https://doi.org/10.1186/s13068-016-0608-9CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lewis NG, Yamamoto E (1990) Lignin-occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol 41:455–496.  https://doi.org/10.1146/annurev.pp.41.060190.002323CrossRefPubMedGoogle Scholar
  27. Li Y, Li Y, Jin W, Sharpton TJ, Mackie RI, Cann I, Cheng Y, Zhu W (2019) Combined genomic, transcriptomic, proteomic, and physiological characterization of the growth of Pecoramyces sp. F1 in monoculture and co-culture with a syntrophic methanogen. Front Microbiol 10:435.  https://doi.org/10.3389/fmicb.2019.00435CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495.  https://doi.org/10.1093/nar/gkt1178CrossRefGoogle Scholar
  29. Lowe RGT, Howlett BJ (2012) Indifferent, affectionate, or deceitful: lifestyles and secretomes of fungi. PLoS Pathog 8(3):e1002515.  https://doi.org/10.1371/journal.ppat.1002515CrossRefPubMedPubMedCentralGoogle Scholar
  30. Manavalan T, Manavalan A, Heese K (2015) Characterization of lignocellulolytic enzymes from white-rot fungi. Curr Microbiol 70:485–498.  https://doi.org/10.1007/s00284-014-0743-0CrossRefPubMedGoogle Scholar
  31. Martinez D, Larrondo LF, Putnam N, SollewijnGelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700.  https://doi.org/10.1038/nbt967CrossRefPubMedGoogle Scholar
  32. Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP et al (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci U S A 106:1954–1959.  https://doi.org/10.1073/pnas.0809575106CrossRefPubMedPubMedCentralGoogle Scholar
  33. McCotter SW, Horianopoulos LC, Kronstad JW (2016) Regulation of the fungal secretome. Curr Genet 62:533–545.  https://doi.org/10.1007/s00294-016-0578-2CrossRefPubMedGoogle Scholar
  34. McFarlane HE, Döring A, Persson S (2014) The cell biology of cellulose synthesis. Annu Rev Plant Biol 65:69–94.  https://doi.org/10.1146/annurev-arplant-050213-040240CrossRefPubMedGoogle Scholar
  35. Ohm RA, Riley R, Salamov A, Min B, Choi I, Grigoriev IV (2014) Genomics of wood-degrading fungi. Fungal Genet Biol 72:82–90.  https://doi.org/10.1016/j.fgb.2014.05.001CrossRefPubMedGoogle Scholar
  36. Presley GN, Schilling JS (2017) Distinct growth and secretome strategies for two taxonomically divergent brown rot fungi. Appl Environ Microbiol 83:e02987–e02916.  https://doi.org/10.1128/AEM.02987-16CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ralph J, Lapierre C, Boerjan W (2019) Lignin structure and its engineering. Curr Opin Biotechnol 56:240–249.  https://doi.org/10.1016/j.copbio.2019.02.019CrossRefPubMedGoogle Scholar
  38. Reina R, Kellner H, Hess J, Jehmlich N, García-Romera I, Aranda E, Hofrichter M, Liers C (2019) Genome and secretome of Chondrostereum purpureum correspond to saprotrophic and phytopathogenic life styles. PLoS One 14:e0212769.  https://doi.org/10.1371/journal.pone.0212769CrossRefPubMedPubMedCentralGoogle Scholar
  39. Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW et al (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci U S A 111:9923–9928.  https://doi.org/10.1073/pnas.1400592111CrossRefPubMedPubMedCentralGoogle Scholar
  40. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291.  https://doi.org/10.1007/s10295-003-0049-xCrossRefPubMedGoogle Scholar
  41. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289.  https://doi.org/10.1146/annurev-arplant-042809-112315CrossRefPubMedGoogle Scholar
  42. Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365:119–125.  https://doi.org/10.1038/365119a0CrossRefGoogle Scholar
  43. Singh D, Chen S (2008) The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl Microbiol Biotechnol 81:399–417.  https://doi.org/10.1007/s00253-008-1706-9CrossRefPubMedGoogle Scholar
  44. Sirohi SK, Singh N, Dagar SS, Puniya AK (2012) Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Appl Microbiol Biotechnol 95:1135–1154.  https://doi.org/10.1007/s00253-012-4262-2CrossRefPubMedGoogle Scholar
  45. SistaKameshwar AK, Qin W (2018) Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi. Mycology 9:93–105.  https://doi.org/10.1080/21501203.2017.1419296CrossRefGoogle Scholar
  46. Steenbakkers P, Freelove A, Van Cranenbroek B, Sweegers B, Harhangi H, Vogels G, Hazlewood G, Gilbert H, Op den Camp H (2002) The major component of the cellulosomes of anaerobic fungi from the genus Piromyces is a family 48 glycoside hydrolase. DNA Seq 13:313–320.  https://doi.org/10.1080/1042517021000024191CrossRefPubMedGoogle Scholar
  47. Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A et al (2016) Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351:1192–1195. https://doi.org/10.1126/science.aad1431
  48. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547.  https://doi.org/10.1128/MMBR.64.3.515-547.2000CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wang TY, Chen HL, Lu MJ, Chen YC, Sung HM, Mao CT, Cho HY, Ke HM, Hwa TY et al (2011) Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses. Biotechnol Biofuels 4:24.  https://doi.org/10.1186/1754-6834-4-24CrossRefPubMedPubMedCentralGoogle Scholar
  50. Xie C, Yan L, Gong W, Zhu Z, Tan S, Chen D, Hu Z, Peng Y (2016) Effects of different substrates on lignocellulosic enzyme expression, enzyme activity, substrate utilization and biological efficiency of Pleurotus eryngii. Cell Physiol Biochem 39:1479–1494.  https://doi.org/10.1159/000447851CrossRefPubMedGoogle Scholar
  51. Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi Volume 1: diversity and enzymes perspectives. Springer International Publishing, ChamCrossRefGoogle Scholar
  52. Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer International Publishing, ChamCrossRefGoogle Scholar
  53. Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ, Atiyeh HK, Wilkins MR, Elshahed MS (2013) The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol 79:4620–4634.  https://doi.org/10.1128/AEM.00821-13CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nasib Singh
    • 1
  • Joginder Singh
    • 2
  1. 1.Department of Microbiology, Akal College of Basic SciencesEternal UniversityBaru SahibIndia
  2. 2.Department of BiotechnologySchool of Bioengineering and Biosciences, Lovely Professional University, JalandharPhagwaraIndia

Personalised recommendations