Hybrid SPECT/CT and PET/CT Imaging in Infectious Diseases

  • Sveva Auletta
  • Thomas Q. Christensen
  • Søren Hess


Hybrid imaging with SPECT/CT and PET/CT has had a profound impact on diagnostic imaging and in infection imaging too, combining functional information with anatomic details provided by nuclear medicine and radiological devices, respectively. In the early times, Nuclear Medicine and Radiological imaging could be co-registered or acquired separately and fused a posteriori, but artifacts in images alignment and mismatches could occur in operator-dependent manner. Currently, SPECT and PET cameras have been implemented developing new strategies and software to analyze images. In this chapter, hybrid SPECT/CT and PET/CT imaging will be described with particular focus on the technical characteristics, the interpretative quantitation, and their relevance in infection imaging.


SPECT/CT PET/CT Hybrid imaging Infectious diseases 


  1. 1.
    O’Connor MK, Kemp BJ. Single-photon emission computed tomography/computed tomography: basic instrumentation and innovations. Semin Nucl Med. 2006;36(4):258–66. Scholar
  2. 2.
    Bunyaviroch T, Aggarwal A, Oates ME. Optimized scintigraphic evaluation of infection and inflammation: role of single-photon emission computed tomography/computed tomography fusion imaging. Semin Nucl Med. 2006;36(4):295–311. Scholar
  3. 3.
    Townsend DW. Positron emission tomography/computed tomography. Semin Nucl Med. 2008;38(3):152–66. Scholar
  4. 4.
    Patton JA, Townsend DW, Hutton BF. Hybrid imaging technology: from dreams and vision to clinical devices. Semin Nucl Med. 2009;39(4):247–63. Scholar
  5. 5.
    Khafif A, Schneebaum S, Fliss DM, Lerman H, Metser U, Ben-Yosef R, et al. Lymphoscintigraphy for sentinel node mapping using a hybrid single photon emission CT (SPECT)/CT system in oral cavity squamous cell carcinoma. Head Neck. 2006;28(10):874–9. Scholar
  6. 6.
    Lerman H, Lievshitz G, Zak O, Metser U, Schneebaum S, Even-Sapir E. Improved sentinel node identification by SPECT/CT in overweight patients with breast cancer. J Nucl Med. 2007;48(2):201–6.PubMedGoogle Scholar
  7. 7.
    Krausz Y, Keidar Z, Kogan I, Even-Sapir E, Bar-Shalom R, Engel A, et al. SPECT/CT hybrid imaging with 111In-pentetreotide in assessment of neuroendocrine tumours. Clin Endocrinol. 2003;59(5):565–73.CrossRefGoogle Scholar
  8. 8.
    Perri M, Erba P, Volterrani D, Lazzeri E, Boni G, Grosso M, et al. Octreo-SPECT/CT imaging for accurate detection and localization of suspected neuroendocrine tumors. Q J Nucl Med Mol Imaging. 2008;52(4):323–33.PubMedGoogle Scholar
  9. 9.
    Pfannenberg AC, Eschmann SM, Horger M, Lamberts R, Vonthein R, Claussen CD, et al. Benefit of anatomical-functional image fusion in the diagnostic work-up of neuroendocrine neoplasms. Eur J Nucl Med Mol Imaging. 2003;30(6):835–43. Scholar
  10. 10.
    Horger M, Eschmann SM, Pfannenberg C, Storek D, Dammann F, Vonthein R, et al. The value of SPET/CT in chronic osteomyelitis. Eur J Nucl Med Mol Imaging. 2003;30(12):1665–73. Scholar
  11. 11.
    Weon YC, Yang SO, Choi YY, Shin JW, Ryu JS, Shin MJ, et al. Use of Tc-99m HMPAO leukocyte scans to evaluate bone infection: incremental value of additional SPECT images. Clin Nucl Med. 2000;25(7):519–26.CrossRefGoogle Scholar
  12. 12.
    Sanli Y, Ozkan ZG, Unal SN, Turkmen C, Kilicoglu O. The additional value of Tc 99m HMPAO white blood cell SPECT in the evaluation of bone and soft tissue infections. Mol Imaging Radionuclide Ther. 2011;20(1):7–13. Scholar
  13. 13.
    Filippi L, Schillaci O. Usefulness of hybrid SPECT/CT in 99mTc-HMPAO-labeled leukocyte scintigraphy for bone and joint infections. J Nucl Med. 2006;47(12):1908–13.PubMedGoogle Scholar
  14. 14.
    Bar-Shalom R, Yefremov N, Guralnik L, Keidar Z, Engel A, Nitecki S, et al. SPECT/CT using 67Ga and 111In-labeled leukocyte scintigraphy for diagnosis of infection. J Nucl Med. 2006;47(4):587–94.PubMedGoogle Scholar
  15. 15.
    Even-Sapir E, Keidar Z, Bar-Shalom R. Hybrid imaging (SPECT/CT and PET/CT)—improving the diagnostic accuracy of functional/metabolic and anatomic imaging. Semin Nucl Med. 2009;39(4):264–75. Scholar
  16. 16.
    Seo Y, Mari C, Hasegawa BH. Technological development and advances in single-photon emission computed tomography/computed tomography. Semin Nucl Med. 2008;38(3):177–98. Scholar
  17. 17.
    Fricke H, Fricke E, Weise R, Kammeier A, Lindner O, Burchert W. A method to remove artifacts in attenuation-corrected myocardial perfusion SPECT Introduced by misalignment between emission scan and CT-derived attenuation maps. J Nucl Med. 2004;45(10):1619–25.PubMedGoogle Scholar
  18. 18.
    Goetze S, Wahl RL. Prevalence of misregistration between SPECT and CT for attenuation-corrected myocardial perfusion SPECT. J Nucl Cardiol. 2007;14(2):200–6. Scholar
  19. 19.
    Ruf J, Steffen I, Mehl S, Rosner C, Denecke T, Pape UF, et al. Influence of attenuation correction by integrated low-dose CT on somatostatin receptor SPECT. Nucl Med Commun. 2007;28(10):782–8. Scholar
  20. 20.
    Steffen IG, Mehl S, Heuck F, Elgeti F, Furth C, Amthauer H, et al. Attenuation correction of somatostatin receptor SPECT by integrated low-dose CT: is there an impact on sensitivity? Clin Nucl Med. 2009;34(12):869–73. Scholar
  21. 21.
    Ruf J, Seehofer D, Denecke T, Stelter L, Rayes N, Felix R, et al. Impact of image fusion and attenuation correction by SPECT-CT on the scintigraphic detection of parathyroid adenomas. Nuklearmedizin. 2007;46(1):15–21.CrossRefGoogle Scholar
  22. 22.
    Signore A, Jamar F, Israel O, Buscombe J, Martin-Comin J, Lazzeri E. Clinical indications, image acquisition and data interpretation for white blood cells and anti-granulocyte monoclonal antibody scintigraphy: an EANM procedural guideline. Eur J Nucl Med Mol Imaging. 2018;
  23. 23.
    Erba PA, Isreal O. SPECT/CT in infection and inflammation. Clin Transl Imaging. 2014;2:519–35.CrossRefGoogle Scholar
  24. 24.
    Pelosi E, Baiocco C, Pennone M, Migliaretti G, Varetto T, Maiello A, Bellò M, Bisi G. 99mTc-HMPAO-leukocyte scintigraphy in patients with symptomatic total hip or knee arthroplasty: improved diagnostic accuracy by means of semiquantitative evaluation. J Nucl Med. 2004;45:438–44.PubMedGoogle Scholar
  25. 25.
    Conti F, Malviya G, Ceccarelli F, Priori R, Iagnocco A, Valesini G, Signore A. Role of scintigraphy with 99mTc-infliximab in predicting the response of intraarticular infliximab treatment in patients with refractory monoarthritis. Eur J Nucl Med Mol Imaging. 2012;39:1339–47.CrossRefGoogle Scholar
  26. 26.
    Glaudemans AWJM, Bonanno E, Galli F, Zeebregts CJ, de Vries EFJ, Koole M, Luurtsema G, Boersma HH, Taurino M, Slart RHJA, Signore A. In vivo and in vitro evidence that 99mTc-HYNIC-interleukin-2 is able to detect T lymphocytes in vulnerable atherosclerotic plaques of the carotid artery. Eur J Nucl Med Mol Imaging. 2014;41:1710–9.CrossRefGoogle Scholar
  27. 27.
    Strauss HW, Grewal RK, Pandit-Taskar N. Molecular imaging in nuclear cardiology. Semin Nucl Med. 2004;34:47–55.CrossRefGoogle Scholar
  28. 28.
    De Laroche R, Simon E, Suignard N, Williams T, Henry MP, et al. Clinical interest of quantitative bone SPECT-CT in the preoperative assessment of knee osteoarthritis. Medicine (Baltimore). 2018;97(35):e11943.CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun. 2008;29(3):193–207. Scholar
  31. 31.
    Hess S, Alavi A, Basu S. PET-Based personalized management of infectious and inflammatory disorders. PET Clin. 2016;11(3):351–61. Scholar
  32. 32.
    van der Vos CS, Koopman D, Rijnsdorp S, Arends AJ, Boellaard R, van Dalen JA, et al. Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):4–16. Scholar
  33. 33.
    Metser U, Lerman H, Blank A, Lievshitz G, Bokstein F, Even-Sapir E. Malignant involvement of the spine: assessment by 18F-FDG PET/CT. J Nucl Med. 2004;45(2):279–84.PubMedGoogle Scholar
  34. 34.
    Nakamoto Y, Cohade C, Tatsumi M, Hammoud D, Wahl RL. CT appearance of bone metastases detected with FDG PET as part of the same PET/CT examination. Radiology. 2005;237(2):627–34. Scholar
  35. 35.
    Taira AV, Herfkens RJ, Gambhir SS, Quon A. Detection of bone metastases: assessment of integrated FDG PET/CT imaging. Radiology. 2007;243(1):204–11. Scholar
  36. 36.
    Even-Sapir E, Metser U, Flusser G, Zuriel L, Kollender Y, Lerman H, et al. Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med. 2004;45(2):272–8.PubMedGoogle Scholar
  37. 37.
    Jamar F, Buscombe J, Chiti A, Christian PE, Delbeke D, Donohoe KJ, et al. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med. 2013;54(4):647–58. Scholar
  38. 38.
    Palestro CJ. The current role of gallium imaging in infection. Semin Nucl Med. 1994;24(2):128–41.CrossRefGoogle Scholar
  39. 39.
    Segard T, Morandeau LM, Dunne ML, Robinson JO, Murray RJ, Geelhoed EA, et al. Comparison between Gallium-68 citrate PET-CT and Gallium-67 citrate scintigraphy for infection imaging. Intern Med J. 2019;
  40. 40.
    Auletta S, Varani M, Horvat R, Galli F, Signore A, Hess S. PET radiopharmaceuticals for specific bacteria imaging: a systematic review. J Clin Med. 2019;8(2)
  41. 41.
    Glaudemans AWJM, Galli F, Pacilio M, Signore A. Leukocyte and bacteria imaging in prosthetic joint infection. Eur Cell Mater. 2013;25:61–77.CrossRefGoogle Scholar
  42. 42.
    Rabkin Z, Israel O, Keidar Z. Do hyperglycemia and diabetes affect the incidence of false-negative 18F-FDG PET/CT studies in patients evaluated for infection or inflammation and cancer? A comparative analysis. J Nucl Med. 2010;51:1015–20.CrossRefGoogle Scholar
  43. 43.
    Eskian M, Alavi A, Khorasanizadeh M, Viglianti BL, Jacobsson H, et al. Effect of blood glucose level on standardized uptake value (SUV) in 18F-FDG PET-scan: a systematic review and meta-analysis of 20,807 individual SUV measurements. Eur J Nucl Med Mol Imaging. 2019;46:224–37.CrossRefGoogle Scholar
  44. 44.
    Jamar F, Buscombe J, Chiti A, Christian PE, Delbeke D, Donohoe KJ, Israel O, Martin-Comin J, Signore A. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med. 2013;54:647–58.CrossRefGoogle Scholar
  45. 45.
    Chin BB, Lyengar S, Sabundayo BP, Schwartz D. Standardized uptake values in 2-Deoxy-2-[18F]Fluoro-D-glucose with positron emission tomography: clinical significance of iterative reconstruction and segmented attenuation compared with conventional filtered back projection and measured attenuation correction. Mol Imaging Biol. 2002;4:294–300.CrossRefGoogle Scholar
  46. 46.
    Hungenbach S, Delank KS, Dietlein M, Eysel P, Drzezga A, Schmidt MC. 18F-fluorodeoxyglucose uptake pattern in patients with suspected spondylodiscitis. Nucl Med Commun. 2013;34:1068–74.CrossRefGoogle Scholar
  47. 47.
    van der Valk FM, Verweij SL, Zwinderman KAH, Strang AC, et al. Thresholds for arterial wall inflammation quantified by 18F-FDG PET imaging. JACC Cardiovasc Imaging. 2016;9:1198–207.CrossRefGoogle Scholar
  48. 48.
    Lemans JVC, Hobbelink MGG, IJpma FFA, Plate JDT, van den Kieboom J, Bosch P, Leene LPH, Glaudemans AWJM, Govaert GAM. The diagnostic accuracy of 18F-FDG PET/CT in diagnosing fracture-related infections. Eur J Nucl Med Mol Imaging. 2019;46:999–1008.CrossRefGoogle Scholar
  49. 49.
    Nanni C, Boriani L, Salvadori C, Zamparini E, Rorato G, Ambrosini V, et al. FDG PET/CT is useful for the interim evaluation of response to therapy in patients affected by haematogenous spondylodiscitis. Eur J Nucl Med Mol Imaging. 2012;39:1538–44.CrossRefGoogle Scholar
  50. 50.
    Husmann L, Huellner MW, Ledergerber B, et al. Comparing diagnostic accuracy of 18F-FDG-PET/CT, contrast enhanced CT and combined imaging in patients with suspected vascular graft infections. Eur J Nucl Med Mol Imaging. 2019;46:1359–68.CrossRefGoogle Scholar
  51. 51.
    Husmann L, Sah BR, Scherrer A, Burger IA, Stolzmann P, Weber R, Rancic Z, Mayer D, Hasse B, Cohort VASGRA. ¹8F-FDG PET/CT for therapy control in vascular graft infections: a first feasibility study. J Nucl Med. 2015;56:1024–9.CrossRefGoogle Scholar
  52. 52.
    Hess S, Hansson SH, Pedersen KT, Basu S, Høilund-Carlsen PF. FDG-PET/CT in infectious and inflammatory diseases. PET Clin. 2014;9:497–519.CrossRefGoogle Scholar
  53. 53.
    Houshmand S, Salavati A, Hess S, Werner TJ, Alavi A, Zaidi H. An update on novel quantitative techniques in the context of evolving whole-body PET imaging. PET Clin. 2015;10:45–58.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sveva Auletta
    • 1
  • Thomas Q. Christensen
    • 2
  • Søren Hess
    • 3
  1. 1.Nuclear Medicine Unit, Department of Medical-Surgical Sciences and Translational Medicine, Faculty of Medicine and PsychologyUniversity “Sapienza” of RomeRomeItaly
  2. 2.Department of Clinical Engineering, Region of Southern DenmarkOdenseDenmark
  3. 3.Department of Radiology and Nuclear MedicineHospital of Southwest JutlandEsbjergDenmark

Personalised recommendations