Advertisement

Development Trends and Research Problems of Hydraulic Hammers for Mining and Civil Engineering

  • Marek SokolskiEmail author
Chapter

Abstract

The main areas of industrial applications of hydraulic hammers and basic development trends of these devices are presented. Basic functional structures and design structures of hydraulic hammers were characterized. On this background, the limit of further development of conventional hydraulic hammers was determined. Basic research problems have been formulated in relation to hammers used especially in mining and civil engineering. Examples of process analyzes in a hydraulic excitation system and in impact excitation system of conventional hydraulic hammers are presented.

Keywords

Hydraulic hammers Development Topologic structures Research problems Case studies 

References

  1. 1.
    Hlushkova, D.B., Ryzhkov, YuV, Kostina, L.L., Demchenko, S.V.: Increase of wear resistance of the critical parts of hydraulic hammer by means of ion-plasma treatment. Voprosy Atomnoj Nauki i Tekhniki 1–113, 208–211 (2018)Google Scholar
  2. 2.
    Hawryluk, M. Mrzygłód, B.A.: Durability analysis of forging tools for different operating conditions with application of a decision support system based on artificial neural networks (ANN). Eksploatacja i Niezawodnosc—Maint. Reliab. 19(3), 338–348 (2017)CrossRefGoogle Scholar
  3. 3.
    Sokolski, M.: Über die Struktur der Stosserzwingung in Arbeitssystemen von Hydraulikhämmern, [w:] „Off-road machine and vehicles in theory and practice“. In: Dudziński, P. (ed) Proceedings of the 1st International conference, 23–24 Sept 1996, pp. 383–389. ISTVS-East Eur., Office Tech. Univ., Wroclaw (1996)Google Scholar
  4. 4.
    Sokolski, M.: Młoty hydrauliczne - tendencje rozwojowe w minionym ćwierćwieczu (Hydraulic hammers—development trends in the past quarter – century). Górnictwo Odkrywkowe. R. 50, nr 4/5, 123–128 (2009) (in Polish)Google Scholar
  5. 5.
    Sokolski, M.: Postawy syntezy charakterystyk młotów hydraulicznych (Fundamentals of Synthesis of Characteristics of Hydraulic Hammers). Publishing House Oficyna Wydawnicza Politechniki Wroclawskiej, Wrocław (2013). (in Polish)Google Scholar
  6. 6.
    Sokolski, M.: Neue Entwicklungsrichtung bei Hydraulikhämmern für Erdbaumaschinen, [w:] „Mechanisierung im Erdbau“. XIII. Internationale Konferenz, TU Dresden, 6–8 Sept 1988. Dresden 1988, 1–4Google Scholar
  7. 7.
    Bauer, E.E.: Contech Mining Application Manual. Consolidated Technologies. Corp., Mining Division, Denver (sine anno)Google Scholar
  8. 8.
    Grantmyre, I.: Hawkes I.: High-energy impact rockbreaking. Can. Min. Metall. Bull. (1975)Google Scholar
  9. 9.
    Etherington, M., Deering, D.: The fluid tappet—a new concept in high energy impact breaking. In: Earthmoving Industry Conference, Central Illinois Section, Peoria, IL, 10–12 April 1978Google Scholar
  10. 10.
    Zhu, M., Zhao, S., Dong, P.: Modelling and simulation of a direct drive reversing valve for the hydraulic die forging hammer. In: 2016 IEEE International Conference on Aircraft Utility Systems (AUS), Beijing, pp. 206–211 (2016)Google Scholar
  11. 11.
    Redelin, R.A., Kravchenko, V.A., Kamanin, Y.N., Panichkin, A.V., Bozhanov, A.A.: Study of effect of in-line hydropneumatic accumulators on output characteristics of hydraulic hammer. In: IOP Conference Series: Earth and Environmental Science, 10/2017, Vol. 87, Issue 2, pp. 22016, ISSN 1755–1307CrossRefGoogle Scholar
  12. 12.
    Krauze, K.: Experimental determination of impact energy of hydraulic hammers. Arch. Mech. Eng. XLVII(1), 21–32 (2000)Google Scholar
  13. 13.
    Szykowny, K.: Określenie energii udaru młotów hydraulicznych na podstawie pomiarów wy-branych parametrów pracy (Determination of impact energy of hydraulic hammers on the basis of measurements of operation parameters), (PhD Thesis, supervisor: prof. K. Krauze), AGH Kraków – Lubin (2006) (in Polish)Google Scholar
  14. 14.
    Boczarow, J.A., Prokofiew, W.N.: Napędy hydrauliczne pras i młotów (Hydraulic drive systems of Presses and Hammers). Publishing House WNT, Warszawa (1971) (in Polish)Google Scholar
  15. 15.
    Mezentsev, I.V.: Influence of design factors on the efficiency of hydraulic hammers. J. Min. Sci. 39(4), 400–404 (2003)CrossRefGoogle Scholar
  16. 16.
    Park, J.-W., Kim, H.-E.: Development of the test system for measuring the impact energy of a hydraulic breaker. In: Proceedings of the 6th JFPS International Symposium on Fluid Power, pp. 75–79, TSUKUBA 7–10 Nov 2005CrossRefGoogle Scholar
  17. 17.
    Giuffrida, A., Laforgia, D.: Modelling and simulation of a hydraulic breaker. Int. J. Fluid Power 6(2), 47–56 (2005)CrossRefGoogle Scholar
  18. 18.
    Sokolski, M.: A computer-aided method for diagnostic testing of single-acting hydraulic hammers. Model. Simul. Control B 36(2), 55–63 (1991)Google Scholar
  19. 19.
    Sokolski, M., Sokolski, P.: Assessment of the probability of failure-free operation of the working system of a small-dimension hydraulic hammer—a case study. In: Podofillini, L., et al. (eds.) Safety and Reliability of Complex Engineered Systems, pp. 4213–4217. Taylor & Francis Group, London (2015)CrossRefGoogle Scholar
  20. 20.
    Sokolski, M., Sokolski, P.M.: Strength estimation of the impact zone—a critical area of the tools of the hydraulic hammers. Arch. Civil Mech. Eng. 16(4), 767–776 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringWroclaw University of Science and TechnologyWroclawPoland

Personalised recommendations