Modern Design of the Transport Vehicles Drive Structures

  • Franciszek W. PrzystupaEmail author


In the modern design of the transport vehicles drives—universal joints are frequently derived from the synchronous operation. In the paper were discussed ways to counteract this phenomenon. It is necessary to build a diagnozer for the evaluation of the changes in the rigidity of the supports, internal dumping, rigidity of components, etc. Method of diagnosis will allow an assessment of the spatial position of the shafts, their dynamics and as a result, adjust the phase of the shaft. Phase control in real-time will occur through the use of smart tools.


Vehicles Drive Universal joints Spatial position of the shafts 


  1. 1.
    Anantapal, N.: The application concept of universal joint to make limited slip differential, center differential and clutch. SAE Technical Paper (2007).
  2. 2.
    Avallone E.A., Baumeister III T., Sadegh A.M.: Marks’ Standard Handbook for Mechanical Engineers. The McGraw-Hill Companies (2007)Google Scholar
  3. 3.
    Cornay, P., Britton, J.: New variations of the cardan concept increase universal joint performance. SAE Technical Paper (1991).
  4. 4.
    Fischer, I.: Effect of mounting errors on cardan-type universal joint kinematics. SAE Technical Paper (1988).
  5. 5.
    Flesch, G., Jaskulski, L.: The application of design of experiments as a support tool for a drive shaft retention system development. SAE Technical Paper (2005)Google Scholar
  6. 6.
    Garnham, J.: Constant velocity joint material performance criteria. SAE Technical Paper (1996).
  7. 7.
  8. 8.
    Iqbal, J., Qatu, M.: Vibration analysis of a three-piece automotive shaft. SAE Technical Paper (2009).
  9. 9.
    Johnson, R.: High speed fixed constant velocity joint for automotive driveshaft applications. SAE Technical Paper (1998).
  10. 10.
    Kulczyk I.: Wały napędowe, półosie, przeguby wałów i półosi. Bydgoszcz (2011)Google Scholar
  11. 11.
    Kunze, H., et al.: Vibration Reduction on Automotive Shafts Using Piezoceramics. Fraunhofer-Institute for Machine Tools and Forming Technology, Dresden/Germany), Volkswagen AG, Vibration-X, Winchester, MA, USA, Fraunhofer Institut Werkzeugmaschinen und UmformtechnikGoogle Scholar
  12. 12.
    Loh et al.: United States Patent US006752425B2. Semi-active control of automotive steering system vibration magneto_rheological damping, June 22, 2004Google Scholar
  13. 13.
    Lee, C., Polycarpou, A.: Experimental investigation of tripod constant velocity (CV) joint friction. SAE Technical Paper (2006).
  14. 14.
    Maciag, W., Mushenski, M.: New bearing design concept an innovative, U.S. army, design concept for tactical vehicle bearings and universal joints. SAE Technical Paper (1997).
  15. 15.
    Magirius, S., Booker, D.: High speed constant velocity joints for car and light truck driveshafts. SAE Technical Paper (1995).
  16. 16.
    Norton, R.L.: Machine Design: An Integrated Approach, 3rd edn. Prentice Hall (2006)Google Scholar
  17. 17.
    Park, B., Stühler, W.: Dynamic Behaviour of a Universal Joints. SAE Technical Paper (1991)Google Scholar
  18. 18.
    Parmley, R.O.: Illustrated Sourcebook of Mech. McGraw-Hill, Components (2000)Google Scholar
  19. 19.
    Przystupa, F.W.: Diagnozer w systemie technicznym. Publishing House Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw (2010)Google Scholar
  20. 20.
    Ramachandra, S.: Theoretical analysis for practical design of universal joint trunnion bearings. SAE Technical Paper (1986).
  21. 21.
    Sakakibara, M.: Design CAE approach applied to drive train components. SAE Technical Paper (1995).
  22. 22.
    Shigley, J.E., Mischke, C.R., Brown Jr., T.H.: Standard Handbook of Machine Design. The McGraw-Hill Companies (2004)Google Scholar
  23. 23.
    Tsuda, M., Kojima, H., Arita, M.: The development on cold forging technique to form a component of the constant velocity joint. SAE Technical Paper (1986)Google Scholar
  24. 24.
    Ullman, D.: The Mechanical Design Process, 3rd edn. McGraw-Hill (2002)Google Scholar
  25. 25.
    Vedam, K., et al.: Analysis of an automotive driveline with cardan universal joints. SAE Technical Paper (1995).
  26. 26.
    Yamamoto, T., Matsuda, T., Okano, N.: Efficiency of constant velocity universal joints. SAE Technical Paper (1993).
  27. 27.
    Z Car, Diytrade, Pelican Parts, Trico Driveshaft Company, AtlanticGoogle Scholar
  28. 28.
    Gubran, H.B.H., Gupta, K.: Design optimization of automotive propeller shafts. J Vib. Eng. Technol. 2(1) (2014). ©Krishtel eMaging Solutions Pvt. Ltd.Google Scholar
  29. 29.
    Bankar, H., et al.: Material optimization and weight reduction of drive shaft using composite material. IOSR J. Mech. Civil Eng. (IOSR-JMCE) 10(1). e-ISSN: 2278-1684, p-ISSN: 2320-334X (2013)CrossRefGoogle Scholar
  30. 30.
    Sheikh, S.M.A.: Analysis of universal coupling under different torque condition. Int. J. Eng. Sci. Adv. Technol. [IJESAT] 2(3), 690–694. Available online at (2012)
  31. 31.
    Yu, R.S., et al.: Numerical investigation on the dynamic behaviour of advanced ceramics. Eng. Fract. Mech. 71, 897–911 (2004)CrossRefGoogle Scholar
  32. 32.
    Khoshravan, M.R., Paykani, A.: Design of a composite drive shaft and its coupling for automotive application. J. Appl. Res. Technol. 10 (2012)Google Scholar
  33. 33.
    Slocum, A.H.: ME 2.075 Course Notes. MIT (2001)Google Scholar
  34. 34.
    Weck, M., Brecher, C.: Werkzeugmaschinen (Band 2). Springer-Verlag (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringWroclaw University of Science and TechnologyWroclawPoland

Personalised recommendations