Modelling, Computing, and Analyzing Large-Size Rotary Joints

  • Tadeusz SmolnickiEmail author


The chapter presents selected issues regarding modelling, calculating, and researching large-size rotary joints utilized in heavy equipment, vehicles, and engineering objects. It is the fruit of 30 years of cooperation with the industry and research conducted during these years, associated with designing new machines, modernizing machines after long service, diagnosing bearings’ technical state, and forecasting their remaining time of operation. Ways of modelling the support subassembly-slewing bearing-support subassembly system with the use of finite elements are presented. These models were utilized to identify the distribution of load carried by rolling elements and to evaluate the impact of that distribution on the stiffness of the support subassembly. Based on the obtained results, a method of bearing correction greatly reducing the effort of a bearing was developed. It was applied to two heavy equipment machines. Original measuring systems built for that purpose confirmed the correctness of the method. Numerical models used for forecasting plastic wear of a bearing’s raceway and researching this phenomenon in surface mining machines are also described.


Rolling bearings Slewing bearings Load distribution Bearing correction Plastic wear 


  1. 1.
    Nogieć, T., Malcher, K.: Rozwój teorii i metod obliczeń oraz kształtowania łożysk wielkogabarytowych. Etap1. (Development of the theory and methods of calculation and shaping of large-size bearings. Stage 1). IKEM report of the Wroclaw University of Technology No. 86/S-043, Wroclaw 1986 (in Polish)Google Scholar
  2. 2.
    Nogieć, T., Smolnicki, T.: Opracowanie metod i urządzeń do doświadczalnej oceny wpływu parametrów konstrukcji i obciążeń na nośność i trwałość łożysk wieńcowych. (Development of methods and equipment for experimental evaluation of the influence of construction parameters and loads on the load capacity and durability of ring bearings). IKEM report of the Wroclaw University of Technology Ser. SPR. No. 111, Wroclaw (1987) (in Polish)Google Scholar
  3. 3.
    Smolnicki, T., Rusiński, E.: Superelement-based modeling of load distribution in large-size slewing bearings. J. Mech. Des. 129(4), 459–463 (2007)CrossRefGoogle Scholar
  4. 4.
    Smolnicki, T.: Nieliniowe modele układu bieżnia-kula-bieżnia do wyznaczenia rozkładu nacisków w wielkowymiarowym łożysku tocznym. (Non-linear track-to-ball track arrangement models to determine the pressure distribution in a large dimensional rolling bearing). Przegląd Mechaniczny R. 58, nr 5/6, 16–20 (1999) (in Polish)Google Scholar
  5. 5.
    Smolnicki, T., Przybyłek, G.: Wpływ korekcji dźwigara pierścieniowego na dystrybucję obciążenia w wielkogabarytowym łożysku tocznym. Metody doświadczalne w budowie i eksploatacji maszyn. (Effect of ring girder correction on load distribution in large rolling bearing. Experimental methods in machine construction and operation). Vth Scientific Conference, Wrocław-Szklarska Poręba, [14–16 maja] T. 2. Wroclaw, 209–216 (2001) (in Polish)Google Scholar
  6. 6.
    Przybyłek, G.: Metoda uzyskiwania równomiernego obciążenia w parach obrotowych o niejednorodnej podatności. (Method for obtaining a uniform load in rotary pairs of heterogeneous susceptibility). Ph.D. thesis. IKEM report of the Wrocław University of Technology. Ser. PRE No. 14 (2003) (in Polish)Google Scholar
  7. 7.
    Smolnicki, T.: Fizykalne aspekty koherencji wielkogabarytowych łożysk tocznych i odkształcalnych konstrukcji wsporczych. (Physical aspects of coherence of large-size rolling bearings and deformable support structures). Monograph. Publishing House Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw (2002) (in Polish)Google Scholar
  8. 8.
    Smolnicki, T.: Numerical-experimental method of identifying load distribution in large-size bearings. In: 22nd Danubia-Adria Symposium on Experimental Methods in Solid Mechanics. Extended abstracts. Italian Association for Stress Analysis, Monticelli Terme-Parma, Italy, September 28–October 1, 274–275 (2005)Google Scholar
  9. 9.
    Stańco, M.: Modele analityczno-numeryczne zużycia odkształceniowego wielkogabarytowych łożysk tocznych. (Analytical and numerical models of deformational wear of large-size rolling bearings). Ph.D. thesis. IKEM report of the Wrocław University of Technology Ser. PRE No. 2, Wroclaw (2008) (in Polish)Google Scholar
  10. 10.
    Smolnicki, T., Stańco, S., Pietrusiak, D.: Distribution of loads in the large size bearing—problems of identification. Tehnički Vjesnik—Technical Gazette 20(5), 831–836 (2013)Google Scholar
  11. 11.
    Smolnicki, T., Pękalski, G., Jakubik, J., Harnatkiewicz, P.: Investigation into wear mechanisms of the bearing raceway used in bucket wheel excavators. Arch. Civ. Mech. Eng. 17(1), 1–8 (2017)CrossRefGoogle Scholar
  12. 12.
    Smolnicki, T., Koziołek, S.: Methods of identifying plastic wear of large-size bearing tracks. W: Mechatronic systems and materials, MSM 2011: 7th international conference, 7–9 July 2011, Kaunas (Lithuania) (2011)Google Scholar
  13. 13.
    Smolnicki, T., Harnatkiewicz, P., Stańco, M.: Degradation of a geared bearing of a stacker. Arch. Civ. Mech. Eng. 10(2), 131–139 (2010)CrossRefGoogle Scholar
  14. 14.
    Smolnicki, T.: Large—size bearings in opencast mining machines. In: Bhattacharya, J. (ed.) Design and Selection of Bulk Material Handling Equipment and Systems: Mining, Mineral Processing, Port, Plant and Excavation Engineering, vol. 1, pp. 105–130. Wide Publishing, Kolkata (2012)Google Scholar
  15. 15.
    Smolnicki T., Stańco M.: Zmiana obciążeń elementów tocznych w łożu kulowym zwałowarki wskutek zużycia odkształceniowego (Change of loads of rolling elements in the bearing raceway of a stacker as a result of deformational wear). Górnictwo i Geoinżynieria R. 35, z. 3/1, 239–245 (2011) (in Polish)Google Scholar
  16. 16.
    Smolnicki, T., Stańco, M.: Prognozowanie zużycia odkształceniowego wielkogabarytowych łożysk tocznych o bieżniach miękkich. (Forecasting of deformational wear and tear of large-size roller bearings with soft raceways). Acta Mechanica et Automatica 3(1), 98–100 (2009). (in Polish)Google Scholar
  17. 17.
    Ohnrich, S.: Berechnung der zweireihigen Kugeldrehverbindungen. Institut für Fördertechnik, Leipzig (1959)Google Scholar
  18. 18.
    Mathias, K.: Berechnung der Wälzkörperkräfte in Grosswälzlagern. Fördern und Heben 29/1979Google Scholar
  19. 19.
    Smolnicki, T., Derlukiewicz, D., Stańco, M.: Evaluation of load distribution in the superstructure rotation joint of single-bucket caterpillar excavators. Autom. Constr. 17(3), 218–223 (2008)CrossRefGoogle Scholar
  20. 20.
    Yu, Y.H., Lee, B.R., Cho, Y.J.: New load distribution method for one-row slewing ball bearing considering retainer force. Int. J. Precision Eng. Manufact. 18(1), 49–56 (2017). Published: JanCrossRefGoogle Scholar
  21. 21.
    Abasolo, M., Coria, I., Plaza, J., Aguirrebeitia, J.: New selection curves for four contact point slewing bearings. Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. 230(10), 1715–1725 (2016). Published: JunCrossRefGoogle Scholar
  22. 22.
    Aithal, S., Prasad, N.S., Shunmugam, M.S., Chellapandi, P.: Effect of manufacturing errors on load distribution in large diameter slewing bearings of fast breeder reactor rotatable plugs. In: Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, vol. 230, Issue 9 (Special Issue: SI), pp. 1449–1460 Published: May 2016Google Scholar
  23. 23.
    Goncz, P., Ulbin, M., Glodez, S.: Computational assessment of the allowable static contact loading of a roller-slewing bearing’s case-hardened raceway. Int. J. Mech. Sci. 94–95, 174–184 (2015). Published: MayCrossRefGoogle Scholar
  24. 24.
    Chen, G.C., Wen, J.M.: Effects of size and raceway hardness on the fatigue life of large rolling bearing. J. Mech. Sci. Technol. 29(9), 3873–3883 (2015). Published: SepCrossRefGoogle Scholar
  25. 25.
    Kania, L., Krynke, M., Mazanek, E.: A catalogue capacity of slewing bearings. Mech. Mach. Theory 58, 29–45 (2012). Published: DecCrossRefGoogle Scholar
  26. 26.
    Hai, G.X., Diao, H.X., Jing, H.R., Hua, W., Jie, C.: A rolling contact fatigue reliability evaluation method and its application to a slewing bearing. J. Tribol.-Trans. ASME 134(1) Article Number: 011101. Published: Jan 2012
  27. 27.
    Qin, S.X., Li, Y.L.: Stress analysis of the working device of multi-functional excavator. Adv. Manuf. Technol. PTS 1–3 Book Series: Adv. Mater. Res. 314–316, 2499–2503. Part: Part 1-3 Published: 2011CrossRefGoogle Scholar
  28. 28.
    Liu, H.B., Li, J.S., Xue, Y.J., Ma, W.: Study on Load distribution calculating method of slewing bearing with the link elements. Adv. Sci. Lett. 4(8–10), 2759–2763 (2011). Published: Aug–OctCrossRefGoogle Scholar
  29. 29.
    Spiewak, S.: Methodology for calculating the complete static carrying capacity of twin slewing bearing. Mech. Mach. Theory 101, 181–194 (2016). Published: JULCrossRefGoogle Scholar
  30. 30.
    Starvin, M.S., Manisekar, K.: The effect of manufacturing tolerances on the load carrying capacity of large diameter bearings. Sadhana-Acad. Proc. Eng. Sci. 40(6), 1899–1911 (Published: Sep 2015)Google Scholar
  31. 31.
    Lacroix, S., Nelias, D., Leblanc, A.: Four-point contact ball bearing model with deformable rings. J. Tribol.-Trans. ASME 135(3) Article Number: 031402, Published: Jul 2013

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringWroclaw University of Science and TechnologyWroclawPoland

Personalised recommendations