Advertisement

Recent Advances in Pediatric Ophthalmology

  • Ken K. NischalEmail author
Chapter

Abstract

Advances in pediatric ophthalmology have in the past 5 years encompassed genetic, surgical and diagnostic. Using a systematic approach, from the front of the eye to the back and then considering the neurophysiology of vision the following areas are the most noteworthy with respect to either evolution of understanding or surgical development. For the cornea, neurotization for anesthetic cornea, and selective endothelial removal for congenital corneal opacification (CCO) together with a new classification for CCO. For the lens, cataract surgery techniques and understanding the outcomes of pediatric cataract surgery. For the retina, gene therapy for retinal dystrophies has exploded in terms of research and commercial treatment. In extraocular muscle surgery the use of tenotomy and reattachment surgery for nystagmus surgery. The neurophysiology of vision, the discovery that even late surgery for neglected congenital cataracts can result in visual development suggesting that our understanding of the critical period may need to be modified. While the field of molecular genetics has exploded there are two concepts that are extremely important for a pediatric ophthalmologist to be aware of; nonsense suppression therapy and the understanding of ciliopathies.

Keywords

Congenital corneal opacity TIPP Rhexis Myopia control Ciliopathies Nonsense suppression therapy 

References

  1. 1.
    Dua HS, Said DG, Messmer EM, Rolando M, Benitez-Del-Castillo JM, Hossain PN, Shortt AJ, Geerling G, Nubile M, Figueiredo FC, Rauz S, Mastropasqua L, Rama P, Baudouin C. Neurotrophic keratopathy. Prog Retin Eye Res. 2018;66:107–31.PubMedGoogle Scholar
  2. 2.
    Ramappa M, Chaurasia S, Chakrabarti S, Kaur I. Congenital corneal anesthesia. J AAPOS. 2014;18(5):427–32.  https://doi.org/10.1016/j.jaapos.2014.05.011. Epub 2014 Oct 21. PubMed PMID: 25439301.CrossRefPubMedGoogle Scholar
  3. 3.
    Mantelli F, Nardella C, Tiberi E, Sacchetti M, Bruscolini A, Lambiase A. Congenital corneal anesthesia and neurotrophic keratitis: diagnosis and management. Biomed Res Int. 2015;2015:805876.  https://doi.org/10.1155/2015/805876. Epub 2015 Sep 16. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Elbaz U, Bains R, Zuker RM, Borschel GH, Ali A. Restoration of corneal sensation with regional nerve transfers and nerve grafts: a new approach to a difficult problem. JAMA Ophthalmol. 2014;132(11):1289–95.PubMedGoogle Scholar
  5. 5.
    Nischal KK. Genetics of congenital corneal opacification--impact on diagnosis and treatment. Cornea. 2015;34(Suppl 10):S24–34.PubMedGoogle Scholar
  6. 6.
    Mataftsi A, Islam L, Kelberman D, Sowden JC, Nischal KK. Chromosome abnormalities and the genetics of congenital corneal opacification. Mol Vis. 2011;17:1624–40. Epub 2011 Jun 17.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Kelberman D, Islam L, Jacques TS, Russell-Eggitt I, Bitner-Glindzicz M, Khaw PT, Nischal KK, Sowden JC. CYP1B1-related anterior segment developmental anomalies novel mutations for infantile glaucoma and von Hippel’s ulcer revisited. Ophthalmology. 2011;118(9):1865–73.PubMedGoogle Scholar
  8. 8.
    Nischal KK. Congenital corneal opacities—a surgical approach to nomenclature and classification. Eye (Lond). 2007;21(10):1326–37.Google Scholar
  9. 9.
    Nischal KK. A new approach to the classification of neonatal corneal opacities. Curr Opin Ophthalmol. 2012;23(5):344–54.PubMedGoogle Scholar
  10. 10.
    Soh YQ, Mehta JS. Selective endothelial removal for peters anomaly. Cornea. 2018;37(3):382–5.PubMedGoogle Scholar
  11. 11.
    Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–7.PubMedGoogle Scholar
  12. 12.
    Meek KM, Hayes S. Corneal cross-linking—a review. Ophthal Physiol Opt. 2013;33(2):78–93.Google Scholar
  13. 13.
    Zotta PG, Diakonis VF, Kymionis GD, Grentzelos M, Moschou KA. Long-term outcomes of corneal cross-linking for keratoconus in pediatric patients. J AAPOS. 2017;21(5):397–401.PubMedGoogle Scholar
  14. 14.
    Mazzotta C, Traversi C, Baiocchi S, Bagaglia S, Caporossi O, Villano A, et al. Corneal collagen cross-linking with riboflavin and ultraviolet a light for pediatric keratoconus: ten-year results. Cornea. 2018;37(5):560–6.PubMedGoogle Scholar
  15. 15.
    Padmanabhan P, Rachapalle Reddi S, Rajagopal R, Natarajan R, Iyer G, Srinivasan B, et al. Corneal collagen cross-linking for keratoconus in pediatric patients-long-term results. Cornea. 2017;36(2):138–43.PubMedGoogle Scholar
  16. 16.
    Nicula C, Nicula D, Pop RN. Results at 7 years after cross-linking procedure in keratoconic patients. J Fr Ophtalmol. 2017;40(7):535–41.PubMedGoogle Scholar
  17. 17.
    Raiskup F, Theuring A, Pillunat LE, Spoerl E. Corneal collagen crosslinking with riboflavin and ultraviolet-a light in progressive keratoconus: ten-year results. J Cataract Refract Surg. 2015;41(1):41–6.PubMedGoogle Scholar
  18. 18.
    Leoni-Mesplie S, Mortemousque B, Touboul D, Malet F, Praud D, Mesplie N, et al. Scalability and severity of keratoconus in children. Am J Ophthalmol. 2012;154(1):56–62.e1.PubMedGoogle Scholar
  19. 19.
    Vanathi M, Panda A, Vengayil S, Chaudhuri Z, Dada T. Pediatric keratoplasty. Surv Ophthalmol. 2009;54(2):245–71.PubMedGoogle Scholar
  20. 20.
    Cingu AK, Bez Y, Cinar Y, Turkcu FM, Yildirim A, Sahin A, et al. Impact of collagen cross-linking on psychological distress and vision and health-related quality of life in patients with keratoconus. Eye Contact Lens. 2015;41(6):349–53.PubMedGoogle Scholar
  21. 21.
    Beshtawi IM, Akhtar R, Hillarby MC, O’Donnell C, Zhao X, Brahma A, et al. Biomechanical properties of human corneas following low- and high-intensity collagen cross-linking determined with scanning acoustic microscopy. Invest Ophthalmol Vis Sci. 2013;54(8):5273–80.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Vinciguerra R, Romano V, Arbabi EM, Brunner M, Willoughby CE, Batterbury M, et al. In vivo early corneal biomechanical changes after corneal cross-linking in patients with progressive keratoconus. J Refract Surg. 2017;33(12):840–6.PubMedGoogle Scholar
  23. 23.
    Shetty R, Kaweri L, Nuijts RM, Nagaraja H, Arora V, Kumar RS. Profile of microbial keratitis after corneal collagen cross-linking. Biomed Res Int. 2014;2014:340509.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Evangelista CB, Hatch KM. Corneal collagen cross-linking complications. Semin Ophthalmol. 2018;33(1):29–35.PubMedGoogle Scholar
  25. 25.
    Sharma A, Nottage JM, Mirchia K, Sharma R, Mohan K, Nirankari VS. Persistent corneal edema after collagen cross-linking for keratoconus. Am J Ophthalmol. 2012;154(6):922–6 e1.PubMedGoogle Scholar
  26. 26.
    Tuft SJ, Gregory WM, Buckley RJ. Acute corneal hydrops in keratoconus. Ophthalmology. 1994;101(10):1738–44.PubMedGoogle Scholar
  27. 27.
    Romano V, Vinciguerra R, Arbabi EM, Hicks N, Rosetta P, Vinciguerra P, et al. Progression of keratoconus in patients while awaiting corneal cross-linking: a prospective clinical study. J Refract Surg. 2018;34(3):177–80.PubMedGoogle Scholar
  28. 28.
    Alio JL, Shabayek MH, Artola A. Intracorneal ring segments for keratoconus correction: long-term follow-up. J Cataract Refract Surg. 2006;32(6):978–85.PubMedGoogle Scholar
  29. 29.
    Colin J, Malet FJ. Intacs for the correction of keratoconus: two-year follow-up. J Cataract Refract Surg. 2007;33(1):69–74.PubMedGoogle Scholar
  30. 30.
    Shetty R, Kaweri L, Pahuja N, Nagaraja H, Wadia K, Jayadev C, et al. Current review and a simplified “five-point management algorithm” for keratoconus. Indian J Ophthalmol. 2015;63(1):46–53.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Plager DA, Lynn MJ, Buckley EG, Wilson ME, Lambert SR, Infant Aphakia Treatment Study Group. Complications in the first 5 years following cataract surgery in infants with and without intraocular lens implantation in the Infant Aphakia Treatment Study. Am J Ophthalmol. 2014;158(5):892–8.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Vasavada AR, Vasavada V, Shah SK, Praveen MR, Vasavada VA, Trivedi RH, Rawat F, Koul A. Five-year postoperative outcomes of bilateral aphakia and pseudophakia in children up to 2 years of age: a randomized clinical trial. Am J Ophthalmol. 2018;193:33–44.PubMedGoogle Scholar
  33. 33.
    Mataftsi A, Haidich AB, Kokkali S, Rabiah PK, Birch E, Stager DR Jr, Cheong-Leen R, Singh V, Egbert JE, Astle WF, Lambert SR, Amitabh P, Khan AO, Grigg J, Arvanitidou M, Dimitrakos SA, Nischal KK. Postoperative glaucoma following infantile cataract surgery: an individual patient data meta-analysis. JAMA Ophthalmol. 2014;132(9):1059–67.PubMedGoogle Scholar
  34. 34.
    Serafino M, Trivedi RH, Levin AV, Wilson ME, Nucci P, Lambert SR, Nischal KK, Plager DA, Bremond-Gignac D, Kekunnaya R, Nishina S, Tehrani NN, Ventura MC. Use of the Delphi process in paediatric cataract management. Br J Ophthalmol. 2016;100(5):611–5.PubMedGoogle Scholar
  35. 35.
    Dick HB, Schultz T. Femtosecond laser-assisted cataract surgery in infants. J Cataract Refract Surg. 2013;39(5):665–8.PubMedGoogle Scholar
  36. 36.
    Dick HB, Schelenz D, Schultz T. Femtosecond laser-assisted pediatric cataract surgery: Bochum formula. J Cataract Refract Surg. 2015;41(4):821–6.PubMedGoogle Scholar
  37. 37.
    Khokhar SK, Pillay G, Agarwal E, Mahabir M. Innovations in pediatric cataract surgery. Indian J Ophthalmol. 2017;65(3):210–6.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Hamada S, Low S, Walters BC, Nischal KK. Five-year experience of the 2-incision push-pull technique for anterior and posterior capsulorrhexis in pediatric cataract surgery. Ophthalmology. 2006;113(8):1309–14.PubMedGoogle Scholar
  39. 39.
    Van Looveren J, Ní Dhubhghaill S, Godts D, Bakker E, De Veuster I, Mathysen DG, Tassignon MJ. Pediatric bag-in-the-lens intraocular lens implantation: long-term follow-up. J Cataract Refract Surg. 2015;41(8):1685–92.PubMedGoogle Scholar
  40. 40.
    Lapid-Gortzak R, van der Meulen IJ, Jellema HM, Mourits MP, Nieuwendaal CP. Seven-year follow-up of unilateral multifocal pseudophakia in a child. Int Ophthalmol. 2017;37(1):267–70.PubMedGoogle Scholar
  41. 41.
    Lin H, Ouyang H, Zhu J, Huang S, Liu Z, Chen S, Cao G, Li G, Signer RA, Xu Y, Chung C, Zhang Y, Lin D, Patel S, Wu F, Cai H, Hou J, Wen C, Jafari M, Liu X, Luo L, Zhu J, Qiu A, Hou R, Chen B, Chen J, Granet D, Heichel C, Shang F, Li X, Krawczyk M, Skowronska-Krawczyk D, Wang Y, Shi W, Chen D, Zhong Z, Zhong S, Zhang L, Chen S, Morrison SJ, Maas RL, Zhang K, Liu Y. Lens regeneration using endogenous stem cells with gain of visual function. Nature. 2016;531(7594):323–8.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Saw SM, Katz J, Schein OD, et al. Epidemiology of myopia. Epidemiol Rev. 1996;18:175–87.PubMedGoogle Scholar
  43. 43.
    Saw SM, Carkeet A, Chia KS, Stone RA, Tan DT. Component dependent risk factors for ocular parameters in Singapore Chinese children. Ophthalmology. 2002;109:2065–71.PubMedGoogle Scholar
  44. 44.
    Saw SM, Tong L, Chua WH, Chia KS, Koh D, Tan DT, et al. Incidence and progression of myopia in Singaporean school children. Invest Ophthalmol Vis Sci. 2005;46:51–7.PubMedGoogle Scholar
  45. 45.
    Mak CY, Yam JC, Chen LJ, Lee SM, Young AL. Epidemiology of myopia and prevention of myopia progression in children in East Asia: a review. Hong Kong Med J. 2018;24(6):602–9.PubMedGoogle Scholar
  46. 46.
    Cheng D, Woo GC, Drobe B, Schmid KL. Effect of bifocal and prismatic bifocal spectacles on myopia progression in children: three-year results of a randomized clinical trial. JAMA Ophthalmol. 2014;132(3):258–64.PubMedGoogle Scholar
  47. 47.
    Gwiazda JE, Hyman L, Everett D, Norton T, Kurtz D, Manny R. Five-year results from the correction of myopia evaluation trial (COMET). Invest Ophthalmol Vis Sci. 2006;47:E–abstract 1166.Google Scholar
  48. 48.
    Katz J, Schein OD, Levy B, et al. A randomized trial of rigid gas permeable contact lenses to reduce progression of children’s myopia. Am J Ophthalmol. 2003;136:82–90.PubMedGoogle Scholar
  49. 49.
    Charm J, Cho P. High myopia-partial reduction ortho-k: a 2-year randomized study. Optom Vis Sci. 2013;90(6):530–9.PubMedGoogle Scholar
  50. 50.
    Cho P, Cheung SW. Retardation of myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci. 2012;53(11):7077–85.PubMedGoogle Scholar
  51. 51.
    Mutti D, Sinnott L, Mitchell G, et al. Relative peripheral refractive error and the risk of onset and progression of myopia in children. Invest Ophthalmol Vis Sci. 2011;52:199–205.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Mutti DO, Sinnott LT, Mitchell GL, Jones-Jordan LA, Moeschberger ML, Cotter SA, Kleinstein RN, Manny RE, Twelker JD, Zadnik K, CLEERE Study Group. Relative peripheral refractive error and the risk of onset and progression of myopia in children. Invest Ophthalmol Vis Sci. 2011;52(1):199–205.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Kanda H, Oshika T, Hiraoka T, Hasebe S, Ohno-Matsui K, Ishiko S, Hieda O, Torii H, Varnas SR, Fujikado T. Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial. Jpn J Ophthalmol. 2018;62(5):537–43.PubMedGoogle Scholar
  54. 54.
    Benavente-Pérez A, Nour A, Troilo D. Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus. Invest Ophthalmol Vis Sci. 2014;55(10):6765–73.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Chua WH, Balakrishnan V, Chan YH, et al. Atropine for the treatment of childhood myopia. Ophthalmology. 2006;113:2285–91.PubMedGoogle Scholar
  56. 56.
    Chia A, Chua WH, Cheung YB, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (ATOM2). Ophthalmology. 2012;119:347–54.PubMedGoogle Scholar
  57. 57.
    Chia A, Chua WH, Li W, et al. Atropine for the treatment of childhood myopia: changes after stopping atropine 0.01%, 0.1% and 0.5% (ATOM2). Am J Ophthalmol. 2014;157:451–7.PubMedGoogle Scholar
  58. 58.
    Chia A, Lu QS, Tan D. Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01% eyedrops. Ophthalmology. 2016;123(2):391–9.PubMedGoogle Scholar
  59. 59.
    Wu PC, Chen CT, Lin KK, Sun CC, Kuo CN, Huang HM, Poon YC, Yang ML, Chen CY, Huang JC, Wu PC, Yang IH, Yu HJ, Fang PC, Tsai CL, Chiou ST, Yang YH. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial. Ophthalmology. 2018;125(8):1239–50.PubMedGoogle Scholar
  60. 60.
    Zhou Z, Chen T, Wang M, Jin L, Zhao Y, Chen S, Wang C, Zhang G, Wang Q, Deng Q, Liu Y, Morgan IG, He M, Liu Y, Congdon N. Pilot study of a novel classroom designed to prevent myopia by increasing children’s exposure to outdoor light. PLoS One. 2017;12(7):e0181772.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Galvis V, Tello A, Camacho PA, Parra MM, Merayo-Lloves J. Bio-environmental factors associated with myopia: an updated review. Arch Soc Esp Oftalmol. 2017;92(7):307–25.PubMedGoogle Scholar
  62. 62.
    Torii H, Kurihara T, Seko Y, Negishi K, Ohnuma K, Inaba T, Kawashima M, Jiang X, Kondo S, Miyauchi M, Miwa Y, Katada Y, Mori K, Kato K, Tsubota K, Goto H, Oda M, Hatori M, Tsubota K. Violet light exposure can be a preventive strategy against myopia progression. EBioMedicine. 2017;15:210–9.PubMedGoogle Scholar
  63. 63.
    Conte E, Izaurralde E. Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr Opin Cell Biol. 2005;17:316–25.Google Scholar
  64. 64.
    Lejeune F. Nonsense-mediated mRNA decay at the crossroads of many cellular pathways. BMB Rep. 2017;50:175–85.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature. 2007;447:87–91.PubMedGoogle Scholar
  66. 66.
    Cassan M, Rousset JP. UAG readthrough in mammalian cells: effect of upstream and downstream stop codon contexts reveal different signals. BMC Mol Biol. 2001;2:3.PubMedPubMedCentralGoogle Scholar
  67. 67.
    McCaughan KK, Brown CM, Kalphin ME, Berry MJ, Tate WP. Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc Natl Acad Sci U S A. 1992;92:5431–5.Google Scholar
  68. 68.
    Tate WP, Poole ES, Horsfield JA, Mannering SA, Brown CM, Moffat JG, et al. Translational termination efficiency in both bacteria and mammals is regulated by the base following the stop codon. Biochem Cell Biol. 1995;73:1095–03.PubMedGoogle Scholar
  69. 69.
    Manuvakhova M, Keeling K, Bedwell DM. Aminogylcoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA. 2000;6:1044–55.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Mendell JT, Dietz HC. When the message goes awry: disease-producing mutations that influence mRNA content and performance. Cell. 2001;107:411–4.PubMedGoogle Scholar
  71. 71.
    Richardson R, Smart M, Tracey-white D, Webster AR, Moosajee M. Mechanism and evidence of nonsense suppression therapy for genetic eye disorders. Exp Eye Res. 2017;155:24–37.PubMedGoogle Scholar
  72. 72.
    Kerem E, Hirawat S, Armoni S, Yaakov Y, Shoseyov D, Cohen M, et al. Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet. 2008;372:719–27.PubMedGoogle Scholar
  73. 73.
    Kerem E, Konstan MW, De Boeck K, Accurso FJ, Sermet-Gaudelus I, Wilschanski M, et al. Ataluren for the treatment of nonsense-mutation cystic fibrosis, a randomized double-blind, placebo-controlled phase 3 trial. Lancet Respir Med. 2014;2:539–47.PubMedGoogle Scholar
  74. 74.
    Sermet-Gaudelus I, Boeck KD, Casimir GJ, Vermeulen F, Leal T, Mogenet A, et al. Ataluren (PTC124) induces cystic fibrosis transmemebrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am J Respir Crit Care Med. 2010;182:1262–72.PubMedGoogle Scholar
  75. 75.
    Wilschanski M, Miller LL, Shoseyov D, BLau H, Rivlin J, Aviram M, et al. Chronic ataluren (PTC124) treatment of nonsense mutation cystic fibrosis. Eur Respir J. 2011;38:59–69.PubMedGoogle Scholar
  76. 76.
    Bushby K, Finkel R, Wong B, Barohn R, Campbell C, Comi GP, et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve. 2014;50:477–87.PubMedGoogle Scholar
  77. 77.
    McElroy K, Auld DS. Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression. Proc Natl Acad Sci U S A. 2009;11:e1001593.Google Scholar
  78. 78.
    Sahel JA, Marazova K. Toward postnatal reversal of ocular congenital malformations. J Clin Invest. 2014;124:81–4.PubMedGoogle Scholar
  79. 79.
    Gregory-Evans CY, Wang X, Wasan KM, Zhao J, Metcalfe AL, Gregory-Evans K. Postnatal manipulation of Pax6 dosage reverses congenital tissue malformation defects. J Clin Invest. 2014;124:111–6.PubMedGoogle Scholar
  80. 80.
    Van Heyningen V, Williamson KA. PAX6 in sensory development. Hum Mol Genet. 2002;11:1161–7.PubMedGoogle Scholar
  81. 81.
    Simpson TI, Price DJ. PAX6: a pleitropic player in development. Bioessays. 2002;24:1041–51.PubMedGoogle Scholar
  82. 82.
    Goldmann T, Overlack N, Wolfrum U, Nagel-Wolfrum K. PTC124-mediated translational readthrough of a nonsense mutation causing Usher syndrome type 1C. Hum Gen Ther. 2011;22:537–47.Google Scholar
  83. 83.
    Goldmann T, Overlack N, Noller F, Belakhov V, van Wyk M, Baasov T, et al. A comparative evaluation of NB30, NB54, and PTC124 in translational read-through efficacy for treatment of an USH1C nonsense mutation. EMBO Mol Med. 2012;4:1196–9.Google Scholar
  84. 84.
    Moosajee M, Gregory-Evans K, Ellis CD, Seabra MC, Gregory-Evans CY. Translational bypass of nonsense mutations in zebrafish rep1, pax2.1, and lamb1 highlights a viable therapeutic option for untreatable genetic eye disease. Hum Mol Genet. 2008;17:3987–4000.PubMedGoogle Scholar
  85. 85.
    Muto R, Yamamori S, Ohashi H, Osawa M. Prediction by FISH analysis of the occurrence of Wilms tumor in aniridia patients. Am J Med Genet. 2009;108:285–9.Google Scholar
  86. 86.
    Fischbach BV, Trout KL, Lewis J, Luis CA, Sika M. WAGR syndrome: a clinical review of 54 cases. Pediatrics. 2005;116:984–8.PubMedGoogle Scholar
  87. 87.
    Breslow NE, Olshan A, Beckwith JB, Green DM. Epidemiology of Wilms’ tumor. Med Pediatr Oncol. 1993;21:172–81.PubMedGoogle Scholar
  88. 88.
    Breslow NE, Takashima JR, Ritchey ML, Strong LC, Green DM. Renal failure in the Denys-Drash and Wilms’ Tumor Aniridia-syndromes. Cancer Res. 2000;60:4030–2.PubMedGoogle Scholar
  89. 89.
    Breslow NE, Norris R, Norkool P, et al. Characteristics and outcomes of children with the Wilms’ Tumor-Aniridia syndrome: a report from the National Wilms’ Tumor Study Group. J Clin Oncol. 2003;24:4579–85.Google Scholar
  90. 90.
    Toriello HV, Parisi MA. Cilia and the ciliopathies: an introduction. Am J Med Genet C Semin Med Genet. 2009;15:261–2.Google Scholar
  91. 91.
    Baker K, Beales PL. Making sense of cilia in disease: the human ciliopathies. Am J Med Genet C Semin Med Genet. 2009;151C:281–9515.PubMedGoogle Scholar
  92. 92.
    Mitchison HM, Valente EM. Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol. 2017;241:294–309.PubMedGoogle Scholar
  93. 93.
    Mitchison TJ, Mitchison HM. Cell biology: how cilia beat. Nature. 2010;463:308–9.PubMedGoogle Scholar
  94. 94.
    Rosenbaum JL, Witman GB. Intraflagellar transport. Nat Rev Mol Cell Biol. 2002;3:813–25.PubMedGoogle Scholar
  95. 95.
    Goetz SC, Anderson KV. The primary cilium: a signaling centre during vertebrate development. Nat Rev Genet. 2010;11:331–44.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Gerdes JM, Davis EE, Katsanis N. The vertebrate primary cilium in development, homeostasis, and disease. Cell. 2009;137:32–45.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Hildebrant F, Benzing T, Natsanis N. Ciliopathies. N Engl J Med. 2011;364:1533–43.Google Scholar
  98. 98.
    Satir P, Pedersen LB, Christensen ST. The primary cilium at a glance. J Cell Sci. 2010;123:499–503.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Hoey DA, Downs ME, Jacobs CR. The mechanics of the primary cilium: an intricate structure with complex function. J Biomech. 2012;45:17–26.PubMedGoogle Scholar
  100. 100.
    Basten SG, Giles RH. Functional aspects of primary cilia in signaling, cell cycle, and tumorigenesis. Cilia. 2013;2:6.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol. 2002;12:R378–80.PubMedGoogle Scholar
  102. 102.
    Yoder BK, Hou X, Guay-Woodford LM. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in the renal cilia. J Am Soc Nephrol. 2002;13:2508–16.Google Scholar
  103. 103.
    Lin F, Hiesberger T, Cordes K, Sinclair AM, Goldstein LS, Somlo S, et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci U S A. 2003;100:5286–91.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Yokoyama T. Ciliary subcompartments and cysto-proteins. Anat Sci Int. 2017;92:207–14.PubMedGoogle Scholar
  105. 105.
    Hildebrant F, Attanasio M, Otto E. Nephronophthisis: disease mechanisms of a ciliopathy. J Am Soc Nephrol. 2009;20:23–35.Google Scholar
  106. 106.
    Srivastava S, Sayer JA. Nephronophthisis. J Pediatr Genet. 2014;3:103–14.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Parisi MA, Doherty D, Eckert ML, Shaw DW, Ozyurek H, Aysun S, et al. AHI1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome. J Med Genet. 2006;43:334–9.PubMedGoogle Scholar
  108. 108.
    Mockel A, Perdomo Y, Stutzmann F, Letsch J, Marion V, Dollfus H. Retinal dystrophy in Bardet-Biedl syndrome and related syndromic ciliopathies. Prog Retin Eye Res. 2011;30:258–74.Google Scholar
  109. 109.
    Bujakowska KM, Liu Q, Pierce EA. Photoreceptor cilia and retinal ciliopathies. Cold Spring Harb Perspect Biol. 2017;13:a028274.Google Scholar
  110. 110.
    Nishimura DY, Searby CC, Carmi R, Elbedour K, Van Maldergem L, Fulton AB, et al. Positional cloning of a novel gene on chromosome 16q causing Bardet-Biedl syndrome (BBS). Hum Mol Genet. 2001;10:865–74.PubMedGoogle Scholar
  111. 111.
    Quinlan RJ, Tobin JL, Beales PL. Modeling ciliopathies: primary cilia in development and disease. Curr Top Dev Biol. 2008;84:249–310.PubMedGoogle Scholar
  112. 112.
    Tobin JL, Beales PL. The nonmotile ciliopathies. Genet Med. 2009;11:386–402.PubMedGoogle Scholar
  113. 113.
    Waters AM, Beales PL. Ciliopathies: an expanding disease spectrum. Pediatr Nephrol. 2011;26:1039–56.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Campa C, Gallenga CE, Bolletta E, Perri P. The role of gene therapy in the treatment of retinal diseases: a review. Curr Gene Ther. 2017;17(3):194–213.PubMedGoogle Scholar
  115. 115.
    Xue K, Groppe M, Salvetti AP, MacLaren RE. Technique of retinal gene therapy: delivery of viral vector into the subretinal space. Eye (Lond). 2017;31(9):1308–16.Google Scholar
  116. 116.
    MacLaren RE, Bennett J, Schwartz SD. Gene therapy and stem cell transplantation in retinal disease: the new frontier. Ophthalmology. 2016;123(10S):S98–S106.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Pierce EA, Bennett J. The status of RPE65 gene therapy trials: safety and efficacy. Cold Spring Harb Perspect Med. 2015;5(9):a017285.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Papageorgiou E, McLean RJ, Gottlob I. Nystagmus in childhood. Pediatr Neonatol. 2014;55(5):341–51.PubMedGoogle Scholar
  119. 119.
    Singh A, Ashar J, Sharma P, Saxena R, Menon V. A prospective evaluation of retroequatorial recession of horizontal rectus muscles and Hertle-Dell’Ossotenotomy procedure in patients with infantile nystagmus with no definite null position. J AAPOS. 2016;20(2):96–9.PubMedGoogle Scholar
  120. 120.
    Greven MA, Nelson LB. Four-muscle tenotomy surgery for nystagmus. Curr Opin Ophthalmol. 2014;25(5):400–5.PubMedGoogle Scholar
  121. 121.
    Hertle RW, Dell’Osso LF, FitzGibbon EJ, Yang D, Mellow SD. Horizontal rectus muscle tenotomy in children with infantile nystagmus syndrome: a pilot study. J AAPOS. 2004;8(6):539–48.PubMedGoogle Scholar
  122. 122.
    Hertle RW, Dell’Osso LF, FitzGibbon EJ, Thompson D, Yang D, Mellow SD. Horizontal rectus tenotomy in patients with congenital nystagmus: results in 10 adults. Ophthalmology. 2003;110(11):2097–105.PubMedGoogle Scholar
  123. 123.
    Kalia A, Gandhi T, Chatterjee G, Swami P, Dhillon H, Bi S, Chauhan N, Gupta SD, Sharma P, Sood S, Ganesh S, Mathur U, Sinha P. Assessing the impact of a program for late surgical intervention in early-blind children. Public Health. 2017;146:15–23.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Ganesh S, Arora P, Sethi S, Gandhi TK, Kalia A, Chatterjee G, Sinha P. Results of late surgical intervention in children with early-onset bilateral cataracts. Br J Ophthalmol. 2014;98(10):1424–8.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Kalia A, Lesmes LA, Dorr M, Gandhi T, Chatterjee G, Ganesh S, Bex PJ, Sinha P. Development of pattern vision following early and extended blindness. Proc Natl Acad Sci U S A. 2014;111(5):2035–9.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Sinha P, Chatterjee G, Gandhi T, Kalia A. Restoring vision through “Project Prakash”: the opportunities for merging science and service. PLoS Biol. 2013;11(12):e1001741.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Mower GD, Christen WG, Caplan CJ. Very brief visual experience eliminates plasticity in the cat visual cortex. Science. 1983;221(4606):178–80.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.UPMC Children’s Hospital of PittsburghPittsburghUSA

Personalised recommendations