Recent Developments in Glaucoma

  • Nathan M. Kerr
  • Keith BartonEmail author


Glaucoma describes a group of conditions characterised by the progressive loss of retinal ganglion cells and their axons resulting in specific patterns of optic nerve head damage and visual field loss. Recent developments in imaging, visual field analysis, medical management, and surgery are permitting earlier diagnosis, better methods of assessing progression, and an enhanced ability to treat the disease. The introduction of new imaging protocols and techniques including Swept-Source optical coherence tomography (OCT), OCT angiography, and adaptive optics are providing better methods of visualization and structural assessment. The impact of testing frequency, thresholding algorithms, and new analytical techniques are improving the detection and monitoring of vision loss in glaucoma. Promising advancements in pharmacotherapy include the introduction of new chemical entities with novel mechanisms of action, new formulations, and new delivery mechanisms. Recent studies have shed light on the efficacy of laser peripheral iridotomy, clear lens extraction in the management of angle closure, and the role of primary trabeculectomy or tube surgery in patients with uncontrolled glaucoma. Lastly, new minimally invasive glaucoma procedures have been introduced that aim to lower intraocular pressure with a better safety profile and faster recovery than conventional glaucoma surgery. This chapter provides an overview of recent developments in the management of glaucoma.


Glaucoma Optic disc imaging Perimetry Pharmacotherapy Minimally invasive glaucoma surgery 


  1. 1.
    Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–7.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Keel S, Xie J, Foreman J, et al. Prevalence of glaucoma in the Australian National Eye Health Survey. Br J Ophthalmol. 2018.Google Scholar
  3. 3.
    Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081–90.PubMedGoogle Scholar
  4. 4.
    Mwanza JC, Budenz DL, Godfrey DG, et al. Diagnostic performance of optical coherence tomography ganglion cell—inner plexiform layer thickness measurements in early glaucoma. Ophthalmology. 2014;121:849–54.PubMedGoogle Scholar
  5. 5.
    Kuang TM, Zhang C, Zangwill LM, Weinreb RN, Medeiros FA. Estimating lead time gained by optical coherence tomography in detecting glaucoma before development of visual field defects. Ophthalmology. 2015;122:2002–9.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Hwang YH, Kim MK, Kim DW. Segmentation errors in macular ganglion cell analysis as determined by optical coherence tomography. Ophthalmology. 2016;123:950–8.PubMedGoogle Scholar
  7. 7.
    Liu Y, Simavli H, Que CJ, et al. Patient characteristics associated with artifacts in spectralis optical coherence tomography imaging of the retinal nerve fiber layer in glaucoma. Am J Ophthalmol. 2015;159:565–76.e2.PubMedGoogle Scholar
  8. 8.
    Sung KR, Wollstein G, Kim NR, et al. Macular assessment using optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol. 2012;96:1452–5.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Shieh E, Lee R, Que C, et al. Diagnostic performance of a novel three-dimensional neuroretinal rim parameter for glaucoma using high-density volume scans. Am J Ophthalmol. 2016;169:168–78.PubMedGoogle Scholar
  10. 10.
    Kim SY, Park HY, Park CK. The effects of peripapillary atrophy on the diagnostic ability of Stratus and Cirrus OCT in the analysis of optic nerve head parameters and disc size. Invest Ophthalmol Vis Sci. 2012;53:4475–84.PubMedGoogle Scholar
  11. 11.
    Povazay B, Hofer B, Hermann B, et al. Minimum distance mapping using three-dimensional optical coherence tomography for glaucoma diagnosis. J Biomed Opt. 2007;12:041204.PubMedGoogle Scholar
  12. 12.
    Tsikata E, Lee R, Shieh E, et al. Comprehensive three-dimensional analysis of the neuroretinal rim in glaucoma using high-density spectral-domain optical coherence tomography volume scans. Invest Ophthalmol Vis Sci. 2016;57:5498–508.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Mansouri K, Medeiros FA, Tatham AJ, Marchase N, Weinreb RN. Evaluation of retinal and choroidal thickness by swept-source optical coherence tomography: repeatability and assessment of artifacts. Am J Ophthalmol. 2014;157:1022–32.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Lee SY, Kwon HJ, Bae HW, et al. Frequency, type and cause of artifacts in swept-source and cirrus HD optical coherence tomography in cases of glaucoma and suspected glaucoma. Curr Eye Res. 2016;41:957–64.PubMedGoogle Scholar
  15. 15.
    Yang Z, Tatham AJ, Weinreb RN, Medeiros FA, Liu T, Zangwill LM. Diagnostic ability of macular ganglion cell inner plexiform layer measurements in glaucoma using swept source and spectral domain optical coherence tomography. PLoS One. 2015;10:e0125957.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Hood DC, De Cuir N, Blumberg DM, et al. A single wide-field OCT protocol can provide compelling information for the diagnosis of early glaucoma. Transl Vis Sci Technol. 2016;5:4.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Lee KM, Lee EJ, Kim TW, Kim H. Comparison of the abilities of SD-OCT and SS-OCT in evaluating the thickness of the macular inner retinal layer for glaucoma diagnosis. PLoS One. 2016;11:e0147964.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Lee WJ, Na KI, Kim YK, Jeoung JW, Park KH. Diagnostic ability of wide-field retinal nerve fiber layer maps using swept-source optical coherence tomography for detection of preperimetric and early perimetric glaucoma. J Glaucoma. 2017;26:577–85.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Kim YW, Kim DW, Jeoung JW, Kim DM, Park KH. Peripheral lamina cribrosa depth in primary open-angle glaucoma: a swept-source optical coherence tomography study of lamina cribrosa. Eye (Lond). 2015;29:1368–74.Google Scholar
  20. 20.
    Quigley HA, Addicks EM, Green W, Maumenee AE. Optic nerve damage in human glaucoma: Ii. the site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99:635–49.PubMedGoogle Scholar
  21. 21.
    Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24:39–73.PubMedGoogle Scholar
  22. 22.
    Wan KH, Leung CKS. Optical coherence tomography angiography in glaucoma: a mini-review. F1000Res. 2017;6:1686.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Abegao Pinto L, Willekens K, Van Keer K, et al. Ocular blood flow in glaucoma—the Leuven Eye Study. Acta Ophthalmol. 2016;94:592–8.PubMedGoogle Scholar
  24. 24.
    Lee EJ, Lee KM, Lee SH, Kim T-W. OCT angiography of the peripapillary retina in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2016;57:6265–70.PubMedGoogle Scholar
  25. 25.
    Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121:1322–32.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Liu L, Jia Y, Takusagawa HL, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015;133:1045–52.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci. 2016;57:OCT451–OCT9.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Shin JW, Sung KR, Lee JY, Kwon J, Seong M. Optical coherence tomography angiography vessel density mapping at various retinal layers in healthy and normal tension glaucoma eyes. Graefes Arch Clin Exp Ophthalmol. 2017;255:1193–202.PubMedGoogle Scholar
  29. 29.
    Geyman LS, Garg RA, Suwan Y, et al. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmol. 2017;101:1261–8.PubMedGoogle Scholar
  30. 30.
    Cennamo G, Montorio D, Velotti N, Sparnelli F, Reibaldi M, Cennamo G. Optical coherence tomography angiography in pre-perimetric open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 2017;255:1787–93.PubMedGoogle Scholar
  31. 31.
    Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology. 2016;123:2498–508.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology. 2017;124:709–19.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Mansoori T, Sivaswamy J, Gamalapati JS, Balakrishna N. Radial peripapillary capillary density measurement using optical coherence tomography angiography in early glaucoma. J Glaucoma. 2017;26:438–43.PubMedGoogle Scholar
  34. 34.
    Mammo Z, Heisler M, Balaratnasingam C, et al. Quantitative optical coherence tomography angiography of radial peripapillary capillaries in glaucoma, glaucoma suspect, and normal eyes. Am J Ophthalmol. 2016;170:41–9.PubMedGoogle Scholar
  35. 35.
    Wang X, Jiang C, Ko T, et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2015;253:1557–64.PubMedGoogle Scholar
  36. 36.
    Zeboulon P, Leveque PM, Brasnu E, et al. Effect of surgical intraocular pressure lowering on peripapillary and macular vessel density in glaucoma patients: an optical coherence tomography angiography study. J Glaucoma. 2017;26:466–72.PubMedGoogle Scholar
  37. 37.
    Holló G. Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma. 2017;26:e7–e10.PubMedGoogle Scholar
  38. 38.
    Wang X, Jiang C, Kong X, Yu X, Sun X. Peripapillary retinal vessel density in eyes with acute primary angle closure: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2017;255:1013–8.PubMedGoogle Scholar
  39. 39.
    Miller DT, Kocaoglu OP, Wang Q, Lee S. Adaptive optics and the eye (super resolution OCT). Eye (Lond). 2011;25:321–30.Google Scholar
  40. 40.
    Roorda A. Adaptive optics for studying visual function: a comprehensive review. J Vis. 2011;11:6.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991;109:77–83.PubMedGoogle Scholar
  42. 42.
    Kocaoglu OP, Cense B, Jonnal RS, et al. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics. Vision Res. 2011;51:1835–44.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Takayama K, Ooto S, Hangai M, et al. High-resolution imaging of retinal nerve fiber bundles in glaucoma using adaptive optics scanning laser ophthalmoscopy. Am J Ophthalmol. 2013;155:870–81.e3.PubMedGoogle Scholar
  44. 44.
    Chen MF, Chui TY, Alhadeff P, et al. Adaptive optics imaging of healthy and abnormal regions of retinal nerve fiber bundles of patients with glaucoma. Invest Ophthalmol Vis Sci. 2015;56:674–81.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Hood DC, Chen MF, Lee D, et al. Confocal adaptive optics imaging of peripapillary nerve fiber bundles: implications for glaucomatous damage seen on circumpapillary OCT scans. Transl Vis Sci Technol. 2015;4:12.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Hood DC, Lee D, Jarukasetphon R, et al. Progression of local glaucomatous damage near fixation as seen with adaptive optics imaging. Transl Vis Sci Technol. 2017;6:6.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Rossi EA, Granger CE, Sharma R, et al. Imaging individual neurons in the retinal ganglion cell layer of the living eye. Proc Natl Acad Sci U S A. 2017;114:586–91.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013;32:1–21.PubMedGoogle Scholar
  49. 49.
    Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300:5–25.PubMedGoogle Scholar
  50. 50.
    Hood DC, Slobodnick A, Raza AS, de Moraes CG, Teng CC, Ritch R. Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region. Invest Ophthalmol Vis Sci. 2014;55:632–49.PubMedPubMedCentralGoogle Scholar
  51. 51.
    De Moraes CG, Hood DC, Thenappan A, et al. 24-2 visual fields miss central defects shown on 10-2 tests in glaucoma suspects, ocular hypertensives, and early glaucoma. Ophthalmology. 2017;124:1449–56.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Chong LX, McKendrick AM, Ganeshrao SB, Turpin A. Customized, automated stimulus location choice for assessment of visual field defects. Invest Ophthalmol Vis Sci. 2014;55:3265–74.PubMedGoogle Scholar
  53. 53.
    Chong LX, Turpin A, McKendrick AM. Assessing the GOANNA visual field algorithm using artificial scotoma generation on human observers. Transl Vis Sci Technol. 2016;5:1.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Rubinstein NJ, McKendrick AM, Turpin A. Incorporating spatial models in visual field test procedures. Transl Vis Sci Technol. 2016;5:7.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Bogunović H, Kwon YH, Rashid A, et al. Relationships of retinal structure and Humphrey 24-2 visual field thresholds in patients with glaucoma. Invest Ophthalmol Vis Sci. 2015;56:259–71.PubMedCentralGoogle Scholar
  56. 56.
    Ganeshrao SB, McKendrick AM, Denniss J, Turpin AJO, Science V. A perimetric test procedure that uses structural information. Optom Vis Sci. 2015;92:70–82.PubMedGoogle Scholar
  57. 57.
    Chauhan BC, Garway-Heath DF, Goni FJ, et al. Practical recommendations for measuring rates of visual field change in glaucoma. Br J Ophthalmol. 2008;92:569–73.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Wu Z, Saunders LJ, Daga FB, Diniz-Filho A, Medeiros FA. Frequency of testing to detect visual field progression derived using a longitudinal cohort of glaucoma patients. Ophthalmology. 2017;124:786–92.PubMedGoogle Scholar
  59. 59.
    Rao HL, Raveendran S, James V, et al. Comparing the performance of compass perimetry with humphrey field analyzer in eyes with glaucoma. J Glaucoma. 2017;26:292–7.PubMedGoogle Scholar
  60. 60.
    Fogagnolo P, Modarelli A, Oddone F, et al. Comparison of Compass and Humphrey perimeters in detecting glaucomatous defects. Eur J Ophthalmol. 2016;26:598–606.PubMedGoogle Scholar
  61. 61.
    Matsuura M, Murata H, Fujino Y, Hirasawa K, Yanagisawa M, Asaoka R. Evaluating the usefulness of MP-3 microperimetry in glaucoma patients. Am J Ophthalmol. 2018;187:1–9.PubMedGoogle Scholar
  62. 62.
    Zvornicanin E, Zvornicanin J, Hadziefendic B. The use of smart phones in ophthalmology. Acta Inform Med. 2014;22:206–9.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Anderson AJ, Bedggood PA, George Kong YX, Martin KR, Vingrys AJ. Can home monitoring allow earlier detection of rapid visual field progression in glaucoma? Ophthalmology. 2017;124:1735–42.PubMedGoogle Scholar
  64. 64.
    Kong YX, He M, Crowston JG, Vingrys AJ. A comparison of perimetric results from a tablet perimeter and humphrey field analyzer in glaucoma patients. Transl Vis Sci Technol. 2016;5:2.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Kerr NM, Patel HY, Chew SS, Ali NQ, Eady EK, Danesh-Meyer HV. Patient satisfaction with topical ocular hypotensives. Clin Experiment Ophthalmol. 2013;41:27–35.PubMedGoogle Scholar
  66. 66.
    Robin AL, Novack GD, Covert DW, Crockett RS, Marcic TS. Adherence in glaucoma: objective measurements of once-daily and adjunctive medication use. Am J Ophthalmol. 2007;144:533–40.PubMedGoogle Scholar
  67. 67.
    Hennessy AL, Katz J, Covert D, et al. A video study of drop instillation in both glaucoma and retina patients with visual impairment. Am J Ophthalmol. 2011;152:982–8.PubMedGoogle Scholar
  68. 68.
    Garway-Heath DF, Crabb DP, Bunce C, et al. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet. 2015;385:1295–304.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Wang SK, Chang RT. An emerging treatment option for glaucoma: Rho kinase inhibitors. Clin Ophthalmol. 2014;8:883–90.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Rao VP, Epstein DL. Rho GTPase/Rho kinase inhibition as a novel target for the treatment of glaucoma. BioDrugs. 2007;21:167–77.Google Scholar
  71. 71.
    Tokushige H, Waki M, Takayama Y, Tanihara H. Effects of Y-39983, a selective Rho-associated protein kinase inhibitor, on blood flow in optic nerve head in rabbits and axonal regeneration of retinal ganglion cells in rats. Curr Eye Res. 2011;36:964–70.PubMedGoogle Scholar
  72. 72.
    Kitaoka Y, Kitaoka Y, Kumai T, et al. Involvement of RhoA and possible neuroprotective effect of fasudil, a Rho kinase inhibitor, in NMDA-induced neurotoxicity in the rat retina. Brain Res. 2004;1018:111–8.PubMedGoogle Scholar
  73. 73.
    Honjo M, Tanihara H, Kameda T, Kawaji T, Yoshimura N, Araie M. Potential role of Rho-associated protein kinase inhibitor Y-27632 in glaucoma filtration surgery. Invest Ophthalmol Vis Sci. 2007;48:5549–57.PubMedGoogle Scholar
  74. 74.
    Tanihara H, Inoue T, Yamamoto T, et al. Phase 1 clinical trials of a selective Rho kinase inhibitor, K-115. JAMA Ophthalmol. 2013;131:1288–95.PubMedGoogle Scholar
  75. 75.
    Tanihara H, Inoue T, Yamamoto T, et al. Phase 2 randomized clinical study of a Rho kinase inhibitor, K-115, in primary open-angle glaucoma and ocular hypertension. Am J Ophthalmol. 2013;156:731–6.PubMedGoogle Scholar
  76. 76.
    Okumura N, Okazaki Y, Inoue R, et al. Rho-associated kinase inhibitor eye drop (Ripasudil) transiently alters the morphology of corneal endothelial cells. Invest Ophthalmol Vis Sci. 2015;56:7560–7.PubMedGoogle Scholar
  77. 77.
    Tanihara H, Inoue T, Yamamoto T, et al. One-year clinical evaluation of 0.4% ripasudil (K-115) in patients with open-angle glaucoma and ocular hypertension. Acta Ophthalmol. 2016;94:e26–34.PubMedGoogle Scholar
  78. 78.
    Tanihara H, Inoue T, Yamamoto T, et al. Additive intraocular pressure-lowering effects of the rho kinase inhibitor Ripasudil (K-115) combined with timolol or latanoprost: a report of 2 randomized clinical trials. JAMA Ophthalmol. 2015;133:755–61.PubMedGoogle Scholar
  79. 79.
    Levy B, Ramirez N, Novack GD, Kopczynski C. Ocular hypotensive safety and systemic absorption of AR-13324 ophthalmic solution in normal volunteers. Am J Ophthalmol. 2015;159:980–5.e1.Google Scholar
  80. 80.
    Wang RF, Williamson JE, Kopczynski C, Serle JB. Effect of 0.04% AR-13324, a ROCK, and norepinephrine transporter inhibitor, on aqueous humor dynamics in normotensive monkey eyes. J Glaucoma. 2015;24:51–4.Google Scholar
  81. 81.
    Serle JB, Katz LJ, McLaurin E, et al. Two phase 3 clinical trials comparing the safety and efficacy of netarsudil to timolol in patients with elevated intraocular pressure: rho kinase elevated IOP treatment trial 1 and 2 (ROCKET-1 and ROCKET-2). Am J Ophthalmol. 2018;186:116–27.Google Scholar
  82. 82.
    Bacharach J, Dubiner HB, Levy B, Kopczynski CC, Novack GD, Group A-CS. Double-masked, randomized, dose-response study of AR-13324 versus latanoprost in patients with elevated intraocular pressure. Ophthalmology. 2015;122:302–7.Google Scholar
  83. 83.
    Lewis RA, Levy B, Ramirez N, et al. Fixed-dose combination of AR-13324 and latanoprost: a double-masked, 28-day, randomised, controlled study in patients with open-angle glaucoma or ocular hypertension. Br J Ophthalmol. 2016;100:339–44.Google Scholar
  84. 84.
    Krauss AH, Impagnatiello F, Toris CB, et al. Ocular hypotensive activity of BOL-303259-X, a nitric oxide donating prostaglandin F2α agonist, in preclinical models. Exp Eye Res. 2011;93:250–5.PubMedGoogle Scholar
  85. 85.
    Nathanson JA, McKee M. Alterations of ocular nitric oxide synthase in human glaucoma. Invest Ophthalmol Vis Sci. 1995;36:1774–84.PubMedGoogle Scholar
  86. 86.
    Weinreb RN, Ong T, Scassellati Sforzolini B, Vittitow JL, Singh K, Kaufman PL. A randomised, controlled comparison of latanoprostene bunod and latanoprost 0.005% in the treatment of ocular hypertension and open angle glaucoma: the VOYAGER study. Br J Ophthalmol. 2015;99:738–45.Google Scholar
  87. 87.
    Medeiros FA, Martin KR, Peace J, Scassellati Sforzolini B, Vittitow JL, Weinreb RN. Comparison of Latanoprostene Bunod 0.024% and Timolol Maleate 0.5% in open-angle glaucoma or ocular hypertension: the LUNAR study. Am J Ophthalmol. 2016;168:250–9.Google Scholar
  88. 88.
    Weinreb RN, Scassellati Sforzolini B, Vittitow J, Liebmann J. Latanoprostene Bunod 0.024% versus Timolol Maleate 0.5% in subjects with open-angle glaucoma or ocular hypertension: the APOLLO study. Ophthalmology. 2016;123:965–73.Google Scholar
  89. 89.
    Perera SA, Ting DS, Nongpiur ME, et al. Feasibility study of sustained-release travoprost punctum plug for intraocular pressure reduction in an Asian population. Clin Ophthalmol. 2016;10:757–64.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Brandt JD, Sall K, DuBiner H, et al. Six-month intraocular pressure reduction with a topical bimatoprost ocular insert: results of a phase II randomized controlled study. Ophthalmology. 2016;123:1685–94.PubMedGoogle Scholar
  91. 91.
    Brandt JD, DuBiner HB, Benza R, et al. Long-term safety and efficacy of a sustained-release bimatoprost ocular ring. Ophthalmology. 2017;124:1565–6.PubMedGoogle Scholar
  92. 92.
    Franca JR, Foureaux G, Fuscaldi LL, et al. Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: in vitro and in vivo evaluation. PLoS One. 2014;9:e95461.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Lewis R, Christie W, Day D. Bimatoprost sustained-release implants for glaucoma therapy: interim results from a 24-month phase 1/2 clinical trial. In: Paper session presented at The AAO Annual Meeting, Las Vegas, NV; 2015.Google Scholar
  94. 94.
    Lewis RA, Christie WC, Day DG, et al. Bimatoprost sustained-release implants for glaucoma therapy: 6-month results from a phase I/II clinical trial. Am J Ophthalmol. 2017;175:137–47.PubMedGoogle Scholar
  95. 95.
    Glaukos. Glaukos Corporation’s iDose™ Travoprost achieves sustained IOP reduction and favorable safety profile in 12-month interim cohort; 2018.Google Scholar
  96. 96.
    Spaeth GL, Idowu O, Seligsohn A, et al. The effects of iridotomy size and position on symptoms following laser peripheral iridotomy. Am J Ophthalmol. 2006;141:427–8.Google Scholar
  97. 97.
    Vera V, Naqi A, Belovay GW, Varma DK, Ahmed II. Dysphotopsia after temporal versus superior laser peripheral iridotomy: a prospective randomized paired eye trial. Am J Ophthalmol. 2014;157:929–35.PubMedGoogle Scholar
  98. 98.
    Srinivasan K, Zebardast N, Krishnamurthy P, et al. Comparison of new visual disturbances after superior versus nasal/temporal laser peripheral iridotomy: a prospective randomized trial. Ophthalmology. 2018;125:345–51.PubMedGoogle Scholar
  99. 99.
    Gunning FP, Greve EL. Lens extraction for uncontrolled angle-closure glaucoma: long-term follow-up. J Cataract Refract Surg. 1998;24:1347–56.PubMedGoogle Scholar
  100. 100.
    Azuara-Blanco A, Burr J, Ramsay C, et al. Effectiveness of early lens extraction for the treatment of primary angle-closure glaucoma (EAGLE): a randomised controlled trial. Lancet. 2016;388:1389–97.PubMedGoogle Scholar
  101. 101.
    Kerr NM, Kumar HK, Crowston JG, Walland MJ. Glaucoma laser and surgical procedure rates in Australia. Br J Ophthalmol. 2016;100:1686–91.PubMedGoogle Scholar
  102. 102.
    Gedde SJ, Schiffman JC, Feuer WJ, et al. Treatment outcomes in the Tube Versus Trabeculectomy (TVT) study after five years of follow-up. Am J Ophthalmol. 2012;153:789–803.e2.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Gedde SJ, Feuer WJ, Shi W, et al. Treatment outcomes in the primary tube versus trabeculectomy study after 1 year of follow-up. Ophthalmology. 2018;125:650–63.PubMedGoogle Scholar
  104. 104.
    Glaukos. Glaukos announces FDA approval for the iStent inject® Trabecular Micro-Bypass System; 2018.Google Scholar
  105. 105.
    Ivantis. Ivantis Announces FDA approval for its innovative Hydrus® Microstent Device for Minimally Invasive Glaucoma Surgery (MIGS); 2018.Google Scholar
  106. 106.
    Ivantis. New Data from the HORIZON Trial of the Hydrus® Microstent shows significantly lower IOP and medication use at 24 months in a US Patient Cohort; 2018.Google Scholar
  107. 107.
    Ivantis. Ivantis announces results of landmark prospective, randomized comparative MIGS clinical trial; 2018.Google Scholar
  108. 108.
    FDA. Alcon Research, LTD. Recalls CyPass® Micro-stent Systems due to risk of endothelial cell loss; 2018.Google Scholar
  109. 109.
    Vold S, Ahmed IIK, Craven ER, et al. Two-year COMPASS trial results: supraciliary microstenting with phacoemulsification in patients with open-angle glaucoma and cataracts. Ophthalmology. 2016;123:2103–12.PubMedGoogle Scholar
  110. 110.
    ASCRS. Preliminary ASCRS CyPass Withdrawal Consensus Statement; 2018.Google Scholar
  111. 111.
    Alcon. Alcon announces voluntary global market withdrawal of CyPass Micro-Stent for surgical glaucoma; 2018.Google Scholar
  112. 112.
    Schlenker MB, Gulamhusein H, Conrad-Hengerer I, et al. Efficacy, safety, and risk factors for failure of standalone Ab interno gelatin microstent implantation versus standalone trabeculectomy. Ophthalmology. 2017;124:1579–88.PubMedGoogle Scholar
  113. 113.
    Gedde SJ, Herndon LW, Brandt JD, et al. Postoperative complications in the Tube Versus Trabeculectomy (TVT) study during five years of follow-up. Am J Ophthalmol. 2012;153:804–14.e1.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Lewis RA. Ab interno approach to the subconjunctival space using a collagen glaucoma stent. J Cataract Refract Surg. 2014;40:1301–6.PubMedGoogle Scholar
  115. 115.
    Allergan. Allergan Receives FDA Clearance for the XEN® Gel Stent, a New Surgical Treatment for Refractory Glaucoma; 2016.Google Scholar
  116. 116.
    Acosta AC, Espana EM, Yamamoto H, et al. A newly designed glaucoma drainage implant made of poly (styrene-b-isobutylene-b-styrene): biocompatibility and function in normal rabbit eyes. Arch Ophthalmol. 2006;124:1742–9.PubMedGoogle Scholar
  117. 117.
    Batlle JF, Fantes F, Riss I, et al. Three-year follow-up of a novel aqueous humor microshunt. J Glaucoma. 2016;25:e58–65.PubMedGoogle Scholar
  118. 118.
    Arrieta EA, Aly M, Parrish R, et al. Clinicopathologic correlations of poly-(styrene-b-isobutylene-b-styrene) glaucoma drainage devices of different internal diameters in rabbits. Ophthalmic Surg Lasers Imaging Retina. 2011;42:338–45.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Royal Victorian Eye and Ear HospitalMelbourneAustralia
  2. 2.Centre for Eye Research AustraliaMelbourneAustralia
  3. 3.Moorfields Eye HospitalLondonUK
  4. 4.UCL Institute of OphthalmologyLondonUK

Personalised recommendations