Recent Developments in Cataract Surgery

  • Andrzej Grzybowski
  • Piotr Kanclerz


Cataract surgery is the most common surgical procedure performed in medicine. In the 2015 over 20 million surgeries were carried out worldwide, of which 3.6 million in the United States of America and 4.2 million in the European Union. The progress in technology enabled cataract surgery to be the safest and most predictable eye surgery. On the other hand, the increase in life expectancy and quality of life result in higher surmises regarding the outcomes. Currently, individuals over 70 years of age might be declared inactive or retired, however, still wish to maintain an active lifestyle, including driving a car and performing sports. Subsequently, there is a demand for techniques that are even more perfect. New encounters include surgeries performed on patients with dementia and other comorbidities related with ageing. The anticipated duration of intraocular lens in the eye has significantly increased. Thus physico-chemical characteristics and endurance should allow the lens to keep its’ optical properties for up to three decades. The most significant advances in cataract surgery will be briefly discussed within this chapter.


Benchmarking Biometry Cataract surgery Intraocular lens Postoperative complications 



Dr. Grzybowski reports grants, personal fees and non-financial support from Bayer; grants, non-financial support from Novartis; non-financial support from Alcon, personal fees and non-financial support from Valeant, grants and non-financial support from Allergan, grants and non-financial support from Pfizer, grants, and financial support from Santen. Dr. Kanclerz reports non-financial support from Visim. No conflicting relationship exists for any author.


  1. 1.
    Lindstrom R. Thoughts on cataract surgery: 2015. Accessed 22 Oct 2018.
  2. 2.
    Surgical operations and procedures statistics—statistics explained. Accessed 22 Oct 2018.
  3. 3.
    Olson RJ, Braga-Mele R, Chen SH, et al. Cataract in the adult eye preferred practice pattern®. Ophthalmology. 2017;124(2):P1–P119.PubMedGoogle Scholar
  4. 4.
    Chen CL, Clay TH, McLeod S, Chang H-YP, Gelb AW, Dudley RA. A revised estimate of costs associated with routine preoperative testing in medicare cataract patients with a procedure-specific indicator. JAMA Ophthalmol. 2018;136(3):231–8.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Schein OD, Katz J, Bass EB, et al. The value of routine preoperative medical testing before cataract surgery. N Engl J Med. 2000;342(3):168–75.PubMedGoogle Scholar
  6. 6.
    Keay L, Lindsley K, Tielsch J, Katz J, Schein O. Routine preoperative medical testing for cataract surgery. Cochrane Database Syst Rev. 2012;(3):CD007293.Google Scholar
  7. 7.
    Grzybowski A, Kanclerz P. Less might be more: are disposable gloves and gowns necessary for cataract surgery? Acta Ophthalmol. 2018;96(7):e896–7. Scholar
  8. 8.
    Grover M, McLemore R, Tilburt J. Clinicians report difficulty limiting low-value services in daily practice. J Prim Care Community Health. 2016;7(2):135–8.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Brody H. From an ethics of rationing to an ethics of waste avoidance. N Engl J Med. 2012;366(21):1949–51.PubMedGoogle Scholar
  10. 10.
    Chen CL, Lin GA, Bardach NS, et al. Preoperative medical testing in medicare patients undergoing cataract surgery. N Engl J Med. 2015;372(16):1530–8.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Gu Q, Dillon CF, Eberhardt MS, Wright JD, Burt VL. Preventive aspirin and other antiplatelet medication use among U.S. adults aged ≥ 40 years: data from the National Health and Nutrition Examination Survey, 2011-2012. Public Health Rep. 2015;130(6):643–54.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Grzybowski A, Kupidura-Majewski K, Kupidura P. Controversies in anticoagulant therapy in vitreo-retinal surgery. Curr Pharm Des. 2015;21(32):4661–6.PubMedGoogle Scholar
  13. 13.
    Benzimra JD, Johnston RL, Jaycock P, et al. The Cataract National Dataset electronic multicentre audit of 55 567 operations: antiplatelet and anticoagulant medications. Eye. 2008;23(1):10–6.PubMedGoogle Scholar
  14. 14.
    Grzybowski A, Ascaso FJ, Kupidura-Majewski K, Packer M. Continuation of anticoagulant and antiplatelet therapy during phacoemulsification cataract surgery. Curr Opin Ophthalmol. 2015;26(1):28–33.PubMedGoogle Scholar
  15. 15.
    Visnjić MB, Zrinsćak O, Barisić F, Iveković R, Laus KN, Mandić Z. Astigmatism and diagnostic procedures. Acta Clin Croat. 2012;51(2):285–8.PubMedGoogle Scholar
  16. 16.
    Ambrósio R Jr, Belin MW. Imaging of the cornea: topography vs tomography. J Refract Surg. 2010;26(11):847–9.PubMedGoogle Scholar
  17. 17.
    Nayak BK, Dharwadkar S. Corneal topography and tomography. J Clin Ophthalmol Res. 2015;3(1):45.Google Scholar
  18. 18.
    LaHood BR, Goggin M. Measurement of posterior corneal astigmatism by the IOLMaster 700. J Refract Surg. 2018;34(5):331–6.PubMedGoogle Scholar
  19. 19.
    Rydström E, Westin O, Koskela T, Behndig A. Posterior corneal astigmatism in refractive lens exchange surgery. Acta Ophthalmol. 2016;94(3):295–300.PubMedGoogle Scholar
  20. 20.
    NICE Guideline 77: cataracts in adults: management. Published 26 Oct 2018. Accessed 26 Sept 2018.
  21. 21.
    Haigis W, Lege B, Miller N, Schneider B. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol. 2000;238(9):765–73.PubMedGoogle Scholar
  22. 22.
    Olsen T. The accuracy of ultrasonic determination of axial length in pseudophakic eyes. Acta Ophthalmol. 1989;67(2):141–4.Google Scholar
  23. 23.
    Rajan MS, Keilhorn I, Bell JA. Partial coherence laser interferometry vs conventional ultrasound biometry in intraocular lens power calculations. Eye. 2002;16(5):552–6.PubMedGoogle Scholar
  24. 24.
    Chakrabarti A, Nazm N. Update on optical biometry and intraocular lens power calculation. TNOA J Ophthalm Sci Res. 2017;55(3):196.Google Scholar
  25. 25.
    Hirnschall N, Varsits R, Doeller B, Findl O. Enhanced penetration for axial length measurement of eyes with dense cataracts using swept source optical coherence tomography: a consecutive observational study. Ophthalmol Ther. 2018;7(1):119–24.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Kanclerz P. Optical biometry in a commercially available anterior and posterior segment optical coherence tomography device. Clin Exp Optom. 2019. Scholar
  27. 27.
    Fedorov SN, Kolinko AI, Kolinko AI. [A method of calculating the optical power of the intraocular lens]. Vestn Oftalmol. 1967;80(4):27–31.Google Scholar
  28. 28.
    Siddiqui AA, Devgan U. Mastering lens calculations: new formulas and comparisons. Current Ophthalmology Reports. 2018;6(4):233–6. Scholar
  29. 29.
    Koch DD, Hill W, Abulafia A, Wang L. Pursuing perfection in intraocular lens calculations: I. Logical approach for classifying IOL calculation formulas. J Cataract Refract Surg. 2017;43(6):717–8.PubMedGoogle Scholar
  30. 30.
    Clarke GP, Burmeister J. Comparison of intraocular lens computations using a neural network versus the Holladay formula. J Cataract Refract Surg. 1997;23(10):1585–9.PubMedGoogle Scholar
  31. 31.
    Alió JL, Grzybowski A, Romaniuk D. Refractive lens exchange in modern practice: when and when not to do it? Eye Vis (Lond). 2014;1:10.Google Scholar
  32. 32.
    Hoffmann PC, Hütz WW. Analysis of biometry and prevalence data for corneal astigmatism in 23 239 eyes. J Cataract Refract Surg. 2010;36(9):1479–85.PubMedGoogle Scholar
  33. 33.
    Potvin R, Berdahl J, Hardten D, Kramer B. Toric intraocular lens orientation and residual refractive astigmatism: an analysis. Clin Ophthalmol. 2016;10:1829–36.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kansal V, Schlenker M, Ahmed IIK. Interocular axial length and corneal power differences as predictors of postoperative refractive outcomes after cataract surgery. Ophthalmology. 2018;125(7):972–81.PubMedGoogle Scholar
  35. 35.
    Oetting TA. Predicting refractive success in the age of more precise measurements. Ophthalmology. 2018;125(7):982–3.PubMedGoogle Scholar
  36. 36.
    Han JV, McGhee CN. When is a complication a complication in contemporary cataract surgery? Clin Exp Ophthalmol. 2018;46(1):7–10.PubMedGoogle Scholar
  37. 37.
    Han JV, Patel DV, Wallace HB, Kim BZ, Sherwin T, McGhee CN. Auckland Cataract Study III: refining preoperative assessment with cataract risk stratification to reduce intraoperative complications. Am J Ophthalmol. 2019;197:114–20. Scholar
  38. 38.
    Ridley H. Intra-ocular acrylic lenses; a recent development in the surgery of cataract. Br J Ophthalmol. 1952;36(3):113–22.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Nguyen J, Werner L. Intraocular lenses for cataract surgery. In: Kolb H, Fernandez E, Nelson R, editors. Webvision: the organization of the retina and visual system. Salt Lake City: University of Utah Health Sciences Center; 2017.Google Scholar
  40. 40.
    Ollerton A, Werner L, Strenk S, et al. Pathologic comparison of asymmetric or sulcus fixation of 3-piece intraocular lenses with square versus round anterior optic edges. Ophthalmology. 2013;120(8):1580–7.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Grabner G, Ang RE, Vilupuru S. The small-aperture IC-8 intraocular lens: a new concept for added depth of focus in cataract patients. Am J Ophthalmol. 2015;160(6):1176–1184.e1.PubMedGoogle Scholar
  42. 42.
    Mira-Agudelo A, Torres-Sepúlveda W, Barrera JF, et al. Compensation of presbyopia with the light sword lens. Invest Ophthalmol Vis Sci. 2016;57(15):6870–7.PubMedGoogle Scholar
  43. 43.
    Alio JL, Simonov A, Plaza-Puche AB, et al. Visual outcomes and accommodative response of the lumina accommodative intraocular lens. Am J Ophthalmol. 2016;164:37–48.PubMedGoogle Scholar
  44. 44.
    Mamalis N. Adjustable intraocular lens technology. J Cataract Refract Surg. 2014;40(7):1059–60.PubMedGoogle Scholar
  45. 45.
    Werner L, Yeh O, Haymore J, Haugen B, Romaniv N, Mamalis N. Corneal endothelial safety with the irradiation system for light-adjustable intraocular lenses. J Cataract Refract Surg. 2007;33(5):873–8.PubMedGoogle Scholar
  46. 46.
    Hengerer FH, Müller M, Dick HB, Conrad-Hengerer I. Clinical evaluation of macular thickness changes in cataract surgery using a light-adjustable intraocular lens. J Refract Surg. 2016;32(4):250–4.PubMedGoogle Scholar
  47. 47.
    Pohjalainen T, Vesti E, Uusitalo RJ, Laatikainen L. Intraocular pressure after phacoemulsification and intraocular lens implantation in nonglaucomatous eyes with and without exfoliation. J Cataract Refract Surg. 2001;27(3):426–31.PubMedGoogle Scholar
  48. 48.
    Shingleton BJ, Gamell LS, O’Donoghue MW, Baylus SL, King R. Long-term changes in intraocular pressure after clear corneal phacoemulsification: normal patients versus glaucoma suspect and glaucoma patients. J Cataract Refract Surg. 1999;25(7):885–90.PubMedGoogle Scholar
  49. 49.
    Poley BJ, Lindstrom RL, Samuelson TW, Schulze R Jr. Intraocular pressure reduction after phacoemulsification with intraocular lens implantation in glaucomatous and nonglaucomatous eyes: evaluation of a causal relationship between the natural lens and open-angle glaucoma. J Cataract Refract Surg. 2009;35(11):1946–55.PubMedGoogle Scholar
  50. 50.
    Kim JH, Rabiolo A, Morales E, et al. Cataract surgery and rate of visual field progression in primary open-angle glaucoma. Am J Ophthalmol. 2019;201:19–30. Scholar
  51. 51.
    Budenz DL, Gedde SJ. New options for combined cataract and glaucoma surgery. Curr Opin Ophthalmol. 2014;25(2):141–7.PubMedGoogle Scholar
  52. 52.
    Wand M, Gaudio AR, Bruce Shields M. Latanoprost and cystoid macular edema in high-risk aphakic or pseudophakic eyes. J Cataract Refract Surg. 2001;27(9):1397–401.PubMedGoogle Scholar
  53. 53.
    Lima MC, Paranhos A Jr, Salim S, et al. Visually significant cystoid macular edema in pseudophakic and aphakic patients with glaucoma receiving latanoprost. J Glaucoma. 2000;9(4):317–21.PubMedGoogle Scholar
  54. 54.
    Miyake K, Ibaraki N, Goto Y, et al. ESCRS Binkhorst lecture 2002: pseudophakic preservative maculopathy. J Cataract Refract Surg. 2003;29(9):1800–10.PubMedGoogle Scholar
  55. 55.
    Henderson BA, Kim JY, Ament CS, Ferrufino-Ponce ZK, Grabowska A, Cremers SL. Clinical pseudophakic cystoid macular edema. J Cataract Refract Surg. 2007;33(9):1550–8.PubMedGoogle Scholar
  56. 56.
    Klein R, Klein BEK, Wong TY, Tomany SC, Cruickshanks KJ. The association of cataract and cataract surgery with the long-term incidence of age-related maculopathy: the Beaver Dam eye study. Arch Ophthalmol. 2002;120(11):1551–8.PubMedGoogle Scholar
  57. 57.
    Cugati S, Mitchell P, Rochtchina E, Tan AG, Smith W, Wang JJ. Cataract surgery and the 10-year incidence of age-related maculopathy: the Blue Mountains Eye Study. Ophthalmology. 2006;113(11):2020–5.PubMedGoogle Scholar
  58. 58.
    Wang JJ, Klein R, Smith W, Klein BEK, Tomany S, Mitchell P. Cataract surgery and the 5-year incidence of late-stage age-related maculopathy: pooled findings from the Beaver Dam and Blue Mountains eye studies. Ophthalmology. 2003;110(10):1960–7.PubMedGoogle Scholar
  59. 59.
    Ho L, Boekhoorn SS, Liana, et al. Cataract surgery and the risk of aging macula disorder: the Rotterdam study. Invest Ophthalmol Vis Sci. 2008;49(11):4795–800.PubMedGoogle Scholar
  60. 60.
    Buch H, Vinding T, La Cour M, Jensen GB, Prause JU, Nielsen NV. Risk factors for age-related maculopathy in a 14-year follow-up study: the Copenhagen City Eye Study. Acta Ophthalmol Scand. 2005;83(4):409–18.PubMedGoogle Scholar
  61. 61.
    Chew EY, Sperduto RD, Milton RC, et al. Risk of advanced age-related macular degeneration after cataract surgery in the Age-Related Eye Disease Study: AREDS report 25. Ophthalmology. 2009;116(2):297–303.PubMedGoogle Scholar
  62. 62.
    Age-Related Eye Disease Study 2 Research Group, Huynh N, Nicholson BP, et al. Visual acuity after cataract surgery in patients with age-related macular degeneration: age-related eye disease study 2 report number 5. Ophthalmology. 2014;121(6):1229–36.Google Scholar
  63. 63.
    Dong LM, Stark WJ, Jefferys JL, et al. Progression of age-related macular degeneration after cataract surgery. Arch Ophthalmol. 2009;127(11):1412–9.PubMedGoogle Scholar
  64. 64.
    Casparis H, Lindsley K, Kuo IC, Sikder S, Bressler NM. Surgery for cataracts in people with age-related macular degeneration. Cochrane Database Syst Rev. 2017;(2):CD006757.Google Scholar
  65. 65.
    Kernt M, Walch A, Neubauer AS, et al. Filtering blue light reduces light-induced oxidative stress, senescence and accumulation of extracellular matrix proteins in human retinal pigment epithelium cells. Clin Exp Ophthalmol. 2012;40(1):e87–97.PubMedGoogle Scholar
  66. 66.
    Mainster MA, Turner PL. Blue-blocking IOLs decrease photoreception without providing significant photoprotection. Surv Ophthalmol. 2010;55(3):272–89.PubMedGoogle Scholar
  67. 67.
    Grzybowski A, Wasinska-Borowiec W, Alio JL, Amat-Peral P, Tabernero J. Intraocular lenses in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2017;255(9):1687–96.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Grzybowski A, Wasińska-Borowiec W. Fresnel prism intraocular lens and scharioth macula lens. Surv Ophthalmol. 2018;63(1):132.PubMedGoogle Scholar
  69. 69.
    Lee AY, Day AC, Egan C et al. Previous Intravitreal Therapy is Associated with Increased Risk of Posterior Capsule Rupture during Cataract Surgery. Ophthalmology 2016;123(6):1252–6.PubMedGoogle Scholar
  70. 70.
    Jackson TL, Donachie PHJ, Sparrow JM, Johnston RL. United Kingdom National Ophthalmology Database study of vitreoretinal surgery: report 2, macular hole. Ophthalmology. 2013;120(3):629–34.PubMedGoogle Scholar
  71. 71.
    Yee KMP, Tan S, Lesnik Oberstein SY, et al. Incidence of cataract surgery after vitrectomy for vitreous opacities. Ophthalmol Retina. 2017;1(2):154–7.PubMedGoogle Scholar
  72. 72.
    Biró Z, Kovacs B. Results of cataract surgery in previously vitrectomized eyes. J Cataract Refract Surg. 2002;28(6):1003–6.PubMedGoogle Scholar
  73. 73.
    Elhousseini Z, Lee E, Williamson TH. Incidence of lens touch during pars plana vitrectomy and outcomes from subsequent cataract surgery. Retina. 2016;36(4):825–9.PubMedGoogle Scholar
  74. 74.
    Smiddy WE, Stark WJ, Michels RG, Edward Maumenee A, Terry AC, Glaser BM. Cataract extraction after vitrectomy. Ophthalmology. 1987;94(5):483–7.PubMedGoogle Scholar
  75. 75.
    McDermott ML, Puklin JE, Abrams GW, Eliott D. Phacoemulsification for cataract following pars plana vitrectomy. Ophthalmic Surg Lasers. 1997;28(7):558–64.PubMedGoogle Scholar
  76. 76.
    Grusha YO, Masket S, Miller KM. Phacoemulsification and lens implantation after pars plana vitrectomy. Ophthalmology. 1998;105(2):287–94.PubMedGoogle Scholar
  77. 77.
    Lacalle VD, Gárate FJO, Alday NM, Garrido JAL, Agesta JA. Phacoemulsification cataract surgery in vitrectomized eyes. J Cataract Refract Surg. 1998;24(6):806–9.Google Scholar
  78. 78.
    Tandogan T, Khoramnia R, Auffarth GU, Koss MJ, Choi CY. In vivo imaging of intraocular fluidics in vitrectomized swine eyes using a digital fluoroscopy system. J Ophthalmol. 2016;2016:9695165.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Javadi M-A, Feizi S, Moein H-R. Simultaneous penetrating keratoplasty and cataract surgery. J Ophthalmic Vis Res. 2013;8(1):39–46.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Kiire CA, Mukherjee R, Ruparelia N, Keeling D, Prendergast B, Norris JH. Managing antiplatelet and anticoagulant drugs in patients undergoing elective ophthalmic surgery. Br J Ophthalmol. 2014;98(10):1320–4.PubMedGoogle Scholar
  81. 81.
    Friedman DS, Jampel HD, Lubomski LH, et al. Surgical strategies for coexisting glaucoma and cataract: an evidence-based update. Ophthalmology. 2002;109(10):1902–13.PubMedGoogle Scholar
  82. 82.
    Zhang ML, Hirunyachote P, Jampel H. Combined surgery versus cataract surgery alone for eyes with cataract and glaucoma. Cochrane Database Syst Rev. 2015;(7):CD008671.Google Scholar
  83. 83.
    Longo A, Uva MG, Reibaldi A, Avitabile T, Reibaldi M. Long-term effect of phacoemulsification on trabeculectomy function. Eye. 2015;29(10):1347–52.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Nguyen DQ, Niyadurupola N, Tapp RJ, O’Connell RA, Coote MA, Crowston JG. Effect of phacoemulsification on trabeculectomy function. Clin Exp Ophthalmol. 2014;42(5):433–9.PubMedGoogle Scholar
  85. 85.
    Creuzot-Garcher CP, Mariet AS, Benzenine E, et al. Is combined cataract surgery associated with acute postoperative endophthalmitis? A nationwide study from 2005 to 2014. Br J Ophthalmol. 2019;103(4):534–8.PubMedGoogle Scholar
  86. 86.
    Lawrence D, Fedorowicz Z, van Zuuren EJ. Day care versus in-patient surgery for age-related cataract. Cochrane Database Syst Rev. 2015;(11):CD004242.Google Scholar
  87. 87.
    Ianchulev T, Litoff D, Ellinger D, Stiverson K, Packer M. Office-based cataract surgery: population health outcomes study of more than 21 000 cases in the United States. Ophthalmology. 2016;123(4):723–8.PubMedGoogle Scholar
  88. 88.
    Koolwijk J, Fick M, Selles C, et al. Outpatient cataract surgery: incident and procedural risk analysis do not support current clinical ophthalmology guidelines. Ophthalmology. 2015;122(2):281–7.PubMedGoogle Scholar
  89. 89.
    Baeza M, Martinez-Toldos JJ. Anesthesia. In: Martinez-Toldos JJ, Hoyos JE, editors. Step by step: vitrectomy. JP Medical Ltd; 2013. p. 28–42.Google Scholar
  90. 90.
    Alhassan MB, Kyari F, Ejere HOD. Peribulbar versus retrobulbar anaesthesia for cataract surgery. Cochrane Database Syst Rev. 2015;(7):CD004083.Google Scholar
  91. 91.
    Apil A, Kartal B, Ekinci M, et al. Topical anesthesia for cataract surgery: the patients’ perspective. Pain Res Treat. 2014;2014:827659.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Grzybowski A, Kanclerz P. Acute and chronic fluid misdirection syndrome: pathophysiology and treatment. Graefes Arch Clin Exp Ophthalmol. 2018;256(1):135–54.PubMedGoogle Scholar
  93. 93.
    Gogate P, Wood M. Recognising “high-risk” eyes before cataract surgery. Community Eye Health. 2008;21(65):12–4.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Grzybowski A, Wasinska-Borowiec W, Claoué C. Pros and cons of immediately sequential bilateral cataract surgery (ISBCS). Saudi J Ophthalmol. 2016;30(4):244–9.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Arshinoff SA, Partner D, York Finch Eye Associates, et al. Immediately sequential bilateral cataract surgery—a global perspective. US Ophthalm Rev. 2015;8(1):14.Google Scholar
  96. 96.
    Singh R, Dohlman TH, Sun G. Immediately sequential bilateral cataract surgery: advantages and disadvantages. Curr Opin Ophthalmol. 2017;28(1):81–6.PubMedGoogle Scholar
  97. 97.
    Nassiri N, Nassiri N, Sadeghi Yarandi SH, Rahnavardi M. Immediate vs delayed sequential cataract surgery: a comparative study. Eye. 2009;23(1):89–95.PubMedGoogle Scholar
  98. 98.
    Grzybowski A, Krzyżanowska-Berkowska P. Immediate sequential bilateral cataract surgery: who might benefit from the procedure? J Cataract Refract Surg. 2013;39(7):1119–20.PubMedGoogle Scholar
  99. 99.
    Sharp S. A description of a new method of opening the cornea, in order to extract the crystalline humour; By Mr. Samuel Sharp, Surgeon to Guy’s Hospital, and F. R. S. Philos Trans R Soc Lond. 1753;48:161–3.Google Scholar
  100. 100.
    Barraquer J, Boberg-Ans J. Cataract surgery. Br J Ophthalmol. 1959;43(2):69–77.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Hill HF, Barraquer J. Some aspects of the use of enzymatic zonulolysis∗. Am J Ophthalmol. 1962;54(1):89–95.PubMedGoogle Scholar
  102. 102.
    Smith H. The Barraquer operation for cataract. Br J Ophthalmol. 1921;5(12):552–3.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Krwawicz T. Intracapsular extraction of intumescent cataract by application of low temperature. Br J Ophthalmol. 1961;45(4):279–83.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Cataract surgery with intracapsular cataract extraction and spectacles. Surv Ophthalmol. 2000;45:S45–52.Google Scholar
  105. 105.
    Lois M. Mémoires de L’Académie Royale de Chirurgie. Paris: Théophile Barrois Lejeune; 1787.Google Scholar
  106. 106.
    Grzybowski A, Ascaso FJ. Sushruta in 600 B.C. introduced extraocular expulsion of lens material. Acta Ophthalmol. 2014;92(2):194–7.PubMedGoogle Scholar
  107. 107.
    Haldipurkar SS, Shikari HT, Gokhale V. Wound construction in manual small incision cataract surgery. Indian J Ophthalmol. 2009;57(1):9–13.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Blumenthal M, Ashkenazi I, Assia E, Cahane M. Small-incision manual extracapsular cataract extraction using selective hydrodissection. Ophthalmic Surg. 1992;23(10):699–701.PubMedGoogle Scholar
  109. 109.
    Riaz Y, de Silva SR, Evans JR. Manual small incision cataract surgery (MSICS) with posterior chamber intraocular lens versus phacoemulsification with posterior chamber intraocular lens for age-related cataract. Cochrane Database Syst Rev. 2013;(10):CD008813.Google Scholar
  110. 110.
    Venkatesh R, Tan CSH, Sengupta S, Ravindran RD, Krishnan KT, Chang DF. Phacoemulsification versus manual small-incision cataract surgery for white cataract. J Cataract Refract Surg. 2010;36(11):1849–54.PubMedGoogle Scholar
  111. 111.
    McDonnell PJ, Patel A, Green WR. Comparison of intracapsular and extracapsular cataract surgery. Ophthalmology. 1985;92(9):1208–25.PubMedGoogle Scholar
  112. 112.
    Kelman CD. Phaco-emulsification and aspiration. Am J Ophthalmol. 1967;64(1):23–35.PubMedGoogle Scholar
  113. 113.
    Linebarger EJ, Hardten DR, Shah GK, Lindstrom RL. Phacoemulsification and modern cataract surgery. Surv Ophthalmol. 1999;44(2):123–47.PubMedGoogle Scholar
  114. 114.
    Nagy Z, Takacs A, Filkorn T, Sarayba M. Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. J Refract Surg. 2009;25(12):1053–60.PubMedGoogle Scholar
  115. 115.
    Fan W, Yan H, Zhang G. Femtosecond laser-assisted cataract surgery in Fuchs endothelial corneal dystrophy: long-term outcomes. J Cataract Refract Surg. 2018;44(7):864–70.PubMedGoogle Scholar
  116. 116.
    Zhu DC, Shah P, Feuer WJ, Shi W, Koo EH. Outcomes of conventional phacoemulsification versus femtosecond laser-assisted cataract surgery in eyes with Fuchs endothelial corneal dystrophy. J Cataract Refract Surg. 2018;44(5):534–40.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Abell RG, Vote BJ. Cost-effectiveness of femtosecond laser-assisted cataract surgery versus phacoemulsification cataract surgery. Ophthalmology. 2014;121(1):10–6.PubMedGoogle Scholar
  118. 118.
    Ewe SYP, Oakley CL, Abell RG, Allen PL, Vote BJ. Cystoid macular edema after femtosecond laser-assisted versus phacoemulsification cataract surgery. J Cataract Refract Surg. 2015;41(11):2373–8.PubMedGoogle Scholar
  119. 119.
    Schultz T, Joachim SC, Stellbogen M, Dick HB. Prostaglandin release during femtosecond laser-assisted cataract surgery: main inducer. J Refract Surg. 2015;31(2):78–81.PubMedGoogle Scholar
  120. 120.
    Jun JH, Yoo Y-S, Lim SA, Joo C-K. Effects of topical ketorolac tromethamine 0.45% on intraoperative miosis and prostaglandin E release during femtosecond laser-assisted cataract surgery. J Cataract Refract Surg. 2017;43(4):492–7.PubMedGoogle Scholar
  121. 121.
    Day AC, Gore DM, Bunce C, Evans JR. Laser-assisted cataract surgery versus standard ultrasound phacoemulsification cataract surgery. Cochrane Database Syst Rev. 2016;(7):CD010735.Google Scholar
  122. 122.
    Alió JL, Klonowski P, El Kady B. Microincisional lens surgery. In: Essentials in ophthalmology. p. 11–26.Google Scholar
  123. 123.
    Alio JL, Grzybowski A, El Aswad A, Romaniuk D. Refractive lens exchange. Surv Ophthalmol. 2014;59(6):579–98.Google Scholar
  124. 124.
    Olsen T, Dam-Johansen M, Bek T, Hjortdal JO. Corneal versus scleral tunnel incision in cataract surgery: a randomized study. J Cataract Refract Surg. 1997;23(3):337–41.PubMedGoogle Scholar
  125. 125.
    Park HJ, Kwon YH, Weitzman M, Caprioli J. Temporal corneal phacoemulsification in patients with filtered glaucoma. Arch Ophthalmol. 1997;115(11):1375–80.PubMedGoogle Scholar
  126. 126.
    Ernest P, Hill W, Potvin R. Minimizing surgically induced astigmatism at the time of cataract surgery using a square posterior limbal incision. J Ophthalmol. 2011;2011:243170.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Yoon JH, Kim K-H, Lee JY, Nam DH. Surgically induced astigmatism after 3.0 mm temporal and nasal clear corneal incisions in bilateral cataract surgery. Indian J Ophthalmol. 2014;62(6):753.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Pakravan M, Nikkhah H, Yazdani S, Shahabi C, Sedigh-Rahimabadi M. Astigmatic outcomes of temporal versus nasal clear corneal phacoemulsification. J Ophthalmic Vis Res. 2009;4(2):79–83.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Sugar A, Schertzer RM. Clinical course of phacoemulsification wound burns. J Cataract Refract Surg. 1999;25(5):688–92.PubMedGoogle Scholar
  130. 130.
    Syed ZA, Moayedi J, Mohamedi M, et al. Cataract surgery outcomes at a UK independent sector treatment centre. Br J Ophthalmol. 2015;99(11):1460–5.PubMedGoogle Scholar
  131. 131.
    Chan E, Mahroo OAR, Spalton DJ. Complications of cataract surgery. Clin Exp Optom. 2010;93(6):379–89.PubMedGoogle Scholar
  132. 132.
    Osher RH, Yu BC, Koch DD. Posterior polar cataracts: a predisposition to intraoperative posterior capsular rupture. J Cataract Refract Surg. 1990;16(2):157–62.PubMedGoogle Scholar
  133. 133.
    Masket S, Belani S. Combined preoperative topical atropine sulfate 1% and intracameral nonpreserved epinephrine hydrochloride 1:4000 [corrected] for management of intraoperative floppy-iris syndrome. J Cataract Refract Surg. 2007;33(4):580–2.PubMedGoogle Scholar
  134. 134.
    Nikeghbali A, Falavarjani KG, Kheirkhah A. Pupil dilation with intracameral lidocaine during phacoemulsification: benefits for the patient and surgeon. Indian J Ophthalmol. 2008;56(1):63–4.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Nikeghbali A, Falavarjani KG, Kheirkhah A, Bakhtiari P, Kashkouli MB. Pupil dilation with intracameral lidocaine during phacoemulsification. J Cataract Refract Surg. 2007;33(1):101–3.PubMedGoogle Scholar
  136. 136.
    Chang DF, Braga-Mele R, Mamalis N, et al. ASCRS White Paper: clinical review of intraoperative floppy-iris syndrome. J Cataract Refract Surg. 2008;34(12):2153–62.PubMedGoogle Scholar
  137. 137.
    Palea S, Chang DF, Rekik M, Regnier A, Lluel P. Comparative effect of alfuzosin and tamsulosin on the contractile response of isolated rabbit prostatic and iris dilator smooth muscles. J Cataract Refract Surg. 2008;34(3):489–96.PubMedGoogle Scholar
  138. 138.
    Chang DF, Osher RH, Wang L, Koch DD. Prospective multicenter evaluation of cataract surgery in patients taking tamsulosin (Flomax). Ophthalmology. 2007;114(5):957–64.PubMedGoogle Scholar
  139. 139.
    Flach AJ. Intraoperative floppy iris syndrome: pathophysiology, prevention, and treatment. Trans Am Ophthalmol Soc. 2009;107:234–9.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Schlötzer-Schrehardt U, Naumann GO. A histopathologic study of zonular instability in pseudoexfoliation syndrome. Am J Ophthalmol. 1994;118(6):730–43.PubMedGoogle Scholar
  141. 141.
    Schwartz SG, Holz ER, Mieler WF, Kuhl DP. Retained lens fragments in resident-performed cataract extractions. CLAO J. 2002;28(1):44–7.PubMedGoogle Scholar
  142. 142.
    Garg SJ, Lane RG. Pars plana torsional phacoemulsification for removal of retained lens material during pars plana vitrectomy. Retina. 2011;31(4):804–5.PubMedGoogle Scholar
  143. 143.
    Stewart MW. Managing retained lens fragments: raising the bar. Am J Ophthalmol. 2009;147(4):569–70.PubMedGoogle Scholar
  144. 144.
    Stewart MW. Management of retained lens fragments: can we improve? Am J Ophthalmol. 2007;144(3):445–6.PubMedGoogle Scholar
  145. 145.
    Ho LY, Doft BH, Wang L, Bunker CH. Clinical predictors and outcomes of pars plana vitrectomy for retained lens material after cataract extraction. Am J Ophthalmol. 2009;147(4):587–594.e1.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Wilkinson CP, Green WR. Vitrectomy for retained lens material after cataract extraction: the relationship between histopathologic findings and the time of vitreous surgery. Ophthalmology. 2001;108(9):1633–7.PubMedGoogle Scholar
  147. 147.
    Merani R, Hunyor AP, Playfair TJ, et al. Pars plana vitrectomy for the management of retained lens material after cataract surgery. Am J Ophthalmol. 2007;144(3):364–70.PubMedGoogle Scholar
  148. 148.
    Scott IU, Flynn HW Jr, Smiddy WE, et al. Clinical features and outcomes of pars plana vitrectomy in patients with retained lens fragments. Ophthalmology. 2003;110(8):1567–72.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Peck T, Park J, Bajwa A, Shildkrot Y. Timing of vitrectomy for retained lens fragments after cataract surgery. Int Ophthalmol. 2018;38(6):2699–707. Scholar
  150. 150.
    Gupta R, Ram J, Sukhija J, Singh R. Outcome of paediatric cataract surgery with primary posterior capsulotomy and anterior vitrectomy using intra-operative preservative-free triamcinolone acetonide. Acta Ophthalmol. 2014;92(5):e358–61.PubMedGoogle Scholar
  151. 151.
    Sato S, Inoue M, Kobayashi S, Watanabe Y, Kadonosono K. Primary posterior capsulotomy using a 25-gauge vitreous cutter in vitrectomy combined with cataract surgery. J Cataract Refract Surg. 2010;36(1):2–5.PubMedGoogle Scholar
  152. 152.
    Al-Nashar HY, Khalil AS. Primary posterior capsulotomy in adults with posterior capsule opacification. J Cataract Refract Surg. 2016;42(11):1615–9.PubMedGoogle Scholar
  153. 153.
    Mohamed TA, Soliman W, El Sebaity DM, Fathalla AM. Refractive lens exchange combined with primary posterior vitrectorhexis in highly myopic patients. J Ophthalmol. 2017;2017:7826735.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Lindstrom RL, Galloway MS, Grzybowski A, Liegner JT. Dropless cataract surgery: an overview. Curr Pharm Des. 2017;23(4):558–64.PubMedGoogle Scholar
  155. 155.
    An JA, Kasner O, Samek DA, Lévesque V. Evaluation of eyedrop administration by inexperienced patients after cataract surgery. J Cataract Refract Surg. 2014;40(11):1857–61.PubMedGoogle Scholar
  156. 156.
    Greenberg PB, Tseng VL, Wu W-C, et al. Prevalence and predictors of ocular complications associated with cataract surgery in United States veterans. Ophthalmology. 2011;118(3):507–14.PubMedGoogle Scholar
  157. 157.
    Jaycock P, Johnston RL, Taylor H, et al. The Cataract National Dataset electronic multi-centre audit of 55 567 operations: updating benchmark standards of care in the United Kingdom and internationally. Eye. 2007;23(1):38–49.PubMedGoogle Scholar
  158. 158.
    Kessel L, Andresen J, Erngaard D, Flesner P, Tendal B, Hjortdal J. Safety of deferring review after uneventful cataract surgery until 2 weeks postoperatively. J Cataract Refract Surg. 2015;41(12):2755–64.PubMedGoogle Scholar
  159. 159.
    Tan P, Foo FY, Teoh SC, Wong HT. Evaluation of the use of a nurse-administered telephone questionnaire for post-operative cataract surgery review. Int J Health Care Qual Assur. 2014;27(4):347–54.PubMedGoogle Scholar
  160. 160.
    Tufail A, Foss AJ, Hamilton AM. Is the first day postoperative review necessary after cataract extraction? Br J Ophthalmol. 1995;79(7):646–8.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Eloranta H, Falck A. Is an ophthalmic check-up needed after uneventful cataract surgery? A large retrospective comparative cohort study of Finnish patients. Acta Ophthalmol. 2017;95(7):665–70. Scholar
  162. 162.
    Grzybowski A, Kanclerz P. Do we need day-1 postoperative follow-up after cataract surgery. Graefes Arch Clin Exp Ophthalmol. 2019;257(5):855–61.PubMedGoogle Scholar
  163. 163.
    The Royal College of Ophthalmologists. Commissioning guide: cataract surgery. Published Feb 2015. Accessed 20 Oct 2017.
  164. 164.
    Tsangaridou M-A, Grzybowski A, Gundlach E, Pleyer U. Controversies in NSAIDs use in cataract surgery. Curr Pharm Des. 2015;21(32):4707–17.PubMedGoogle Scholar
  165. 165.
    Grzybowski A, Adamiec-Mroczek J. Topical nonsteroidal anti-inflammatory drugs for cystoid macular edema prevention in patients with diabetic retinopathy. Am J Ophthalmol. 2017;181:xiv–vi.PubMedGoogle Scholar
  166. 166.
    Modi SS, Lehmann RP, Walters TR, et al. Once-daily nepafenac ophthalmic suspension 0.3% to prevent and treat ocular inflammation and pain after cataract surgery: phase 3 study. J Cataract Refract Surg. 2014;40(2):203–11.PubMedGoogle Scholar
  167. 167.
    Singh R, Alpern L, Jaffe GJ, et al. Evaluation of nepafenac in prevention of macular edema following cataract surgery in patients with diabetic retinopathy. Clin Ophthalmol. 2012;6:1259–69.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Grzybowski A, Kanclerz P. Pseudophakic macular edema in primary open-angle glaucoma: a prospective study using spectral-domain optical coherence tomography. Am J Ophthalmol. 2017;181:181.PubMedGoogle Scholar
  169. 169.
    Sengupta S, Vasavada D, Pan U, Sindal M. Factors predicting response of pseudophakic cystoid macular edema to topical steroids and nepafenac. Indian J Ophthalmol. 2018;66(6):827–30.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Kakkassery V, Schultz T, Wunderlich MI, Schargus M, Dick HB, Rehrmann J. Evaluation of predictive factors for successful intravitreal dexamethasone in pseudophakic cystoid macular edema. J Ophthalmol. 2017;2017:4625730.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Apple DJ, Solomon KD, Tetz MR, et al. Posterior capsule opacification. Surv Ophthalmol. 1992;37(2):73–116.PubMedGoogle Scholar
  172. 172.
    Colin J, Robinet A, Cochener B. Retinal detachment after clear lens extraction for high myopia: seven-year follow-up. Ophthalmology. 1999;106(12):2281–4; discussion 2285.PubMedGoogle Scholar
  173. 173.
    Fernández-Vega L, Alfonso JF, Villacampa T. Clear lens extraction for the correction of high myopia. Ophthalmology. 2003;110(12):2349–54.PubMedGoogle Scholar
  174. 174.
    Awasthi N, Guo S, Wagner BJ. Posterior capsular opacification: a problem reduced but not yet eradicated. Arch Ophthalmol. 2009;127(4):555–62.PubMedGoogle Scholar
  175. 175.
    Werner L. Biocompatibility of intraocular lens materials. Curr Opin Ophthalmol. 2008;19(1):41–9.PubMedGoogle Scholar
  176. 176.
    Olsen G, Olson RJ. Update on a long-term, prospective study of capsulotomy and retinal detachment rates after cataract surgery. J Cataract Refract Surg. 2000;26(7):1017–21.PubMedGoogle Scholar
  177. 177.
    Pandey SK, Apple DJ, Werner L, Maloof AJ, Milverton EJ. Posterior capsule opacification: a review of the aetiopathogenesis, experimental and clinical studies and factors for prevention. Indian J Ophthalmol. 2004;52(2):99–112.PubMedGoogle Scholar
  178. 178.
    Grzybowski A, Kanclerz P. Does Nd:YAG capsulotomy increase the risk of retinal detachment? Asia Pac J Ophthalmol (Phila). 2018;7(5):339–44. Scholar
  179. 179.
    Grzybowski A, Turczynowska M, Kuhn F. The treatment of postoperative endophthalmitis: should we still follow the endophthalmitis vitrectomy study more than two decades after its publication? Acta Ophthalmol. 2018;96(5):e651–4.PubMedGoogle Scholar
  180. 180.
    Inoue T, Uno T, Usui N, et al. Incidence of endophthalmitis and the perioperative practices of cataract surgery in Japan: Japanese Prospective Multicenter Study for Postoperative Endophthalmitis after Cataract Surgery. Jpn J Ophthalmol. 2018;62(1):24–30.PubMedGoogle Scholar
  181. 181.
    Flynn HW, Batra NR, Schwartz SG, Grzybowski A. Differential diagnosis of endophthalmitis. In: Flynn HW, Batra NR, Schwartz SG, Grzybowski A, editors. Endophthalmitis in clinical practice. Cham: Springer International Publishing AG; 2018. p. 19–40.Google Scholar
  182. 182.
    Endophthalmitis Vitrectomy Study Group. Results of the endophthalmitis vitrectomy study. Arch Ophthalmol. 1995;113(12):1479–96.Google Scholar
  183. 183.
    Arslan OS, Tunc Z, Ucar D, et al. Histologic findings of corneal buttons in decompensated corneas with toxic anterior segment syndrome after cataract surgery. Cornea. 2013;32(10):1387–90.PubMedGoogle Scholar
  184. 184.
    Suzuki T, Ohashi Y, Oshika T, et al. Outbreak of late-onset toxic anterior segment syndrome after implantation of one-piece intraocular lenses. Am J Ophthalmol. 2015;159(5):934–939.e2.PubMedGoogle Scholar
  185. 185.
    Oshika T, Eguchi S, Goto H, Ohashi Y. Outbreak of subacute-onset toxic anterior segment syndrome associated with single-piece acrylic intraocular lenses. Ophthalmology. 2017;124(4):519–23.PubMedGoogle Scholar
  186. 186.
    Sorenson AL, Sorenson RL, Evans DJ. Toxic anterior segment syndrome caused by autoclave reservoir wall biofilms and their residual toxins. J Cataract Refract Surg. 2016;42(11):1602–14.PubMedGoogle Scholar
  187. 187.
    Miyake G, Ota I, Miyake K, Zako M, Iwaki M, Shibuya A. Late-onset toxic anterior segment syndrome. J Cataract Refract Surg. 2015;41(3):666–9.PubMedGoogle Scholar
  188. 188.
    Results of the endophthalmitis vitrectomy study. Arch Ophthalmol. 1995;113(12):1479.Google Scholar
  189. 189.
    Grzybowski A, Kuklo P, Pieczynski J, Beiko G. A review of preoperative manoeuvres for prophylaxis of endophthalmitis in intraocular surgery: topical application of antibiotics, disinfectants, or both? Curr Opin Ophthalmol. 2016;27(1):9–23.PubMedGoogle Scholar
  190. 190.
    Kuklo P, Grzybowski A, Schwartz SG, Flynn HW, Pathengay A. Hot topics in perioperative antibiotics for cataract surgery. Curr Pharm Des. 2017;23(4):551–7.PubMedGoogle Scholar
  191. 191.
    George NK, Stewart MW. The routine use of intracameral antibiotics to prevent endophthalmitis after cataract surgery: how good is the evidence? Ophthalmol Therapy. 2018;7(2):233–45. Scholar
  192. 192.
    Endophthalmitis Study Group, European Society of Cataract & Refractive Surgeons. Prophylaxis of postoperative endophthalmitis following cataract surgery: results of the ESCRS multicenter study and identification of risk factors. J Cataract Refract Surg. 2007;33(6):978–88.Google Scholar
  193. 193.
    Grzybowski A, Kanclerz P, Myers WG. The use of povidone-iodine in ophthalmology. Curr Opin Ophthalmol. 2018;29(1):19–32.PubMedPubMedCentralGoogle Scholar
  194. 194.
    Ahmed IIK, Kranemann C, Chipman M, Malam F. Revisiting early postoperative follow-up after phacoemulsification. J Cataract Refract Surg. 2002;28(1):100–8.PubMedGoogle Scholar
  195. 195.
    Laurell CG, Wickström K, Zetterström C, Lundgren B. Inflammatory response after endocapsular phacoemulsification or conventional extracapsular lens extraction in the rabbit eye. Acta Ophthalmol Scand. 1997;75(4):401–4.PubMedGoogle Scholar
  196. 196.
    Grzybowski A, Kanclerz P. Early postoperative intraocular pressure elevation following cataract surgery. Curr Opin Ophthalmol. 2019;30(1):56–62.PubMedGoogle Scholar
  197. 197.
    Oshika T, Okamoto F, Kaji Y, et al. Retention and removal of a new viscous dispersive ophthalmic viscosurgical device during cataract surgery in animal eyes. Br J Ophthalmol. 2006;90(4):485–7.PubMedPubMedCentralGoogle Scholar
  198. 198.
    Kohnen T, von Ehr M, Schütte E, Koch DD. Evaluation of intraocular pressure with Healon and Healon GV in sutureless cataract surgery with foldable lens implantation. J Cataract Refract Surg. 1996;22(2):227–37.PubMedGoogle Scholar
  199. 199.
    Rainer G, Menapace R, Findl O, Petternel V, Kiss B, Georgopoulos M. Effect of topical brimonidine on intraocular pressure after small incision cataract surgery. J Cataract Refract Surg. 2001;27(8):1227–31.PubMedGoogle Scholar
  200. 200.
    Bömer TG, Lagrèze WD, Funk J. Intraocular pressure rise after phacoemulsification with posterior chamber lens implantation: effect of prophylactic medication, wound closure, and surgeon’s experience. Br J Ophthalmol. 1995;79(9):809–13.PubMedPubMedCentralGoogle Scholar
  201. 201.
    Jarstad JS, Jarstad AR, Chung GW, Tester RA, Day LE. Immediate postoperative intraocular pressure adjustment reduces risk of cystoid macular edema after uncomplicated micro incision coaxial phacoemulsification cataract surgery. Korean J Ophthalmol. 2017;31(1):39–43.PubMedPubMedCentralGoogle Scholar
  202. 202.
    Rhee DJ, Deramo VA, Connolly BP, Blecher MH. Intraocular pressure trends after supranormal pressurization to aid closure of sutureless cataract wounds. J Cataract Refract Surg. 1999;25(4):546–9.PubMedGoogle Scholar
  203. 203.
    Elfersy AJ, Prinzi RA, Peracha ZH, et al. IOP elevation after cataract surgery: results for residents and senior staff at henry ford health system. J Glaucoma. 2016;25(10):802–6.PubMedGoogle Scholar
  204. 204.
    Yasutani H, Hayashi K, Hayashi H, Hayashi F. Intraocular pressure rise after phacoemulsification surgery in glaucoma patients. J Cataract Refract Surg. 2004;30(6):1219–24.PubMedGoogle Scholar
  205. 205.
    Slabaugh MA, Bojikian KD, Moore DB, Chen PP. Risk factors for acute postoperative intraocular pressure elevation after phacoemulsification in glaucoma patients. J Cataract Refract Surg. 2014;40(4):538–44.PubMedGoogle Scholar
  206. 206.
    Cho YK. Early intraocular pressure and anterior chamber depth changes after phacoemulsification and intraocular lens implantation in nonglaucomatous eyes. Comparison of groups stratified by axial length. J Cataract Refract Surg. 2008;34(7):1104–9.PubMedGoogle Scholar
  207. 207.
    Bonnell LN, SooHoo JR, Seibold LK, et al. One-day postoperative intraocular pressure spikes after phacoemulsification cataract surgery in patients taking tamsulosin. J Cataract Refract Surg. 2016;42(12):1753–8.PubMedGoogle Scholar
  208. 208.
    Chang DF, Tan JJ, Tripodis Y. Risk factors for steroid response among cataract patients. J Cataract Refract Surg. 2011;37(4):675–81.PubMedGoogle Scholar
  209. 209.
    O’Brien PD, Ho SL, Fitzpatrick P, Power W. Risk factors for a postoperative intraocular pressure spike after phacoemulsification. Can J Ophthalmol. 2007;42(1):51–5.PubMedGoogle Scholar
  210. 210.
    Łabuz G, Knebel D, Auffarth GU, et al. Glistening formation and light scattering in six hydrophobic-acrylic intraocular lenses. Am J Ophthalmol. 2018;196:112–20. Scholar
  211. 211.
    Colin J, Orignac I, Touboul D. Glistenings in a large series of hydrophobic acrylic intraocular lenses. J Cataract Refract Surg. 2009;35(12):2121–6.PubMedGoogle Scholar
  212. 212.
    Łabuz G, Reus NJ, van den Berg TJTP. Straylight from glistenings in intraocular lenses: in vitro study. J Cataract Refract Surg. 2017;43(1):102–8.PubMedGoogle Scholar
  213. 213.
    van der Mooren M, Franssen L, Piers P. Effects of glistenings in intraocular lenses. Biomed Opt Express. 2013;4(8):1294–304.PubMedPubMedCentralGoogle Scholar
  214. 214.
    Matsushima H, Nagata M, Katsuki Y, et al. Decreased visual acuity resulting from glistening and sub-surface nano-glistening formation in intraocular lenses: a retrospective analysis of 5 cases. Saudi J Ophthalmol. 2015;29(4):259–63.PubMedPubMedCentralGoogle Scholar
  215. 215.
    Beiko GH, Grzybowski A. Glistenings in hydrophobic acrylic intraocular lenses do affect visual function. Clin Ophthalmol. 2013;7:2271–4.PubMedPubMedCentralGoogle Scholar
  216. 216.
    Luo F, Bao X, Qin Y, Hou M, Wu M. Subjective visual performance and objective optical quality with intraocular lens glistening and surface light scattering. J Refract Surg. 2018;34(6):372–8.PubMedGoogle Scholar
  217. 217.
    Beiko GH. A pilot study to determine if intraocular lens choice at the time of cataract surgery has an impact on patient-reported driving habits. Clin Ophthalmol. 2015;9:1573–9.PubMedPubMedCentralGoogle Scholar
  218. 218.
    Beiko GH, Gostimir M, Haj-Ahmad L. A comparison of mesopic visual acuity and objective visual quality following cataract surgery with hydrophobic acrylic intraocular lenses. Clin Ophthalmol. 2017;11:641–6.PubMedPubMedCentralGoogle Scholar
  219. 219.
    Schweitzer C, Orignac I, Praud D, Chatoux O, Colin J. Glistening in glaucomatous eyes: visual performances and risk factors. Acta Ophthalmol. 2014;92(6):529–34.PubMedGoogle Scholar
  220. 220.
    Müllner-Eidenböck A, Amon M, Moser E, et al. Morphological and functional results of AcrySof intraocular lens implantation in children: prospective randomized study of age-related surgical management. J Cataract Refract Surg. 2003;29(2):285–93.PubMedGoogle Scholar
  221. 221.
    Hidaka Y, Negishi K, Matsushima H, et al. [A case of impaired vision due to glistening and whitening of hydrophobic acrylic intraocular lens]. Rinsho Ganka. 2013;67:199–202.Google Scholar
  222. 222.
    Gartaganis SP, Prahs P, Lazari ED, Gartaganis PS, Helbig H, Koutsoukos PG. Calcification of hydrophilic acrylic intraocular lenses with a hydrophobic surface: laboratory analysis of 6 cases. Am J Ophthalmol. 2016;168:68–77.PubMedGoogle Scholar
  223. 223.
    Gurabardhi M, Häberle H, Aurich H, Werner L, Pham D-T. Serial intraocular lens opacifications of different designs from the same manufacturer: clinical and light microscopic results of 71 explant cases. J Cataract Refract Surg. 2018;44(11):1326–32.PubMedGoogle Scholar
  224. 224.
    Mathers WD, Fraunfelder FW, Rich LF. Risk of Lasik surgery vs contact lenses. Arch Ophthalmol. 2006;124(10):1510–1.PubMedGoogle Scholar
  225. 225.
    Grzybowski A, Kanclerz P. Clarifying the methods of fixation of intraocular lenses. Clin Anat. 2017;31(1):2–3.PubMedGoogle Scholar
  226. 226.
    De Silva SR, Arun K, Anandan M, Glover N, Patel CK, Rosen P. Iris-claw intraocular lenses to correct aphakia in the absence of capsule support. J Cataract Refract Surg. 2011;37(9):1667–72.PubMedGoogle Scholar
  227. 227.
    Yamane S, Sato S, Maruyama-Inoue M, Kadonosono K. Flanged intrascleral intraocular lens fixation with double-needle technique. Ophthalmology. 2017;124(8):1136–42.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andrzej Grzybowski
    • 1
    • 2
  • Piotr Kanclerz
    • 3
  1. 1.Department of OphthalmologyUniversity of Warmia and MazuryOlsztynPoland
  2. 2.Institute for Research in Ophthalmology, Foundation for Ophthalmology DevelopmentPoznanPoland
  3. 3.Department of OphthalmologyHygeia ClinicGdańskPoland

Personalised recommendations