Advertisement

Updates in Refractive Surgery

  • M. Joan T. D. Balgos
  • Jorge L. AlióEmail author
Chapter

Abstract

An improved understanding of ammetropia and its effect on visual quality have led to the latest developments in refractive surgery. Eyedrops for presbyopia target the crystalline lens to improve accommodation. Corneal inlays alter the curvature of the cornea to enhance vision at all distances. Diffractive and refractive multifocal intraocular lenses—which aim light at several discrete foci—and extended depth of focus intraocular lenses—which aim light in a continuous plane—improve vision at all distances. Accommodating intraocular lenses change power with accommodative effort. Corneal refractive surgeries like PRK and LASIK have been joined by Small Incision Lenticule Extraction (SMILE)—an all femtosecond laser flapless procedure. Phakic intraocular lens implantation is indicated for a wider range of refractive errors than corneal refractive procedures. These techniques allow for safer and more effective correction of refractive errors, and adequate monitoring of visual quality at all distances for new refractive surgery techniques.

Keywords

Corneal inlays Multifocal intraocular lenses Accommodating intraocular lenses Corneal laser refractive surgery Phakic intraocular lenses 

References

  1. 1.
    Renna A, Alió J, Vejarano L. Pharmacological treatments of presbyopia: a review of modern perspectives. Eye Vis. 2017;4:3.Google Scholar
  2. 2.
    Krader C, Feinbaum C. Simple solution for presbyopia: topical agent acts by reducing pupil size to increase depth of focus. Ophthalmology Times. http://www.ophthalmologytimes.com/modern-medicine-feature-articles/simple-solution-presbyopia. Published 2015. Accessed 10 Mar 2018.
  3. 3.
    Patel S, Salamun F, Matovic K. Pharmacological correction of presbyopia. In: Poster Presentation European Society of Cataract and Refractive Surgery Congress XXXI. http://www.escrs.org/amsterdam2013/programme/posters-details.asp?id=19804. Published 2013. Accessed 28 Mar 2018.
  4. 4.
    Renna A, Vejarano L, De la Cruz E, Alió J. Pharmacological treatment of presbyopia by novel binocularly instilled eye drops: a pilot study. Ophthalmol Therapy. 2016;5:63–73.Google Scholar
  5. 5.
    Cole J. Can an eye drop eliminate presbyopia? Rev Optom. https://www.reviewofoptometry.com/article/ro0617-can-an-eye-drop-eliminate-presbyopia. Published 2017. Accessed 10 Mar 2018.
  6. 6.
    Tsuneyoshi Y, Higuchi A, Negishi K, Tsubota K. Suppression of presbyopia progression with pirenoxine eyedrops: experiments on rats and non-blinded, randomized clinical trial of efficacy. Sci Rep. 2017;7:6819.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Krader C. Topical drops show promise as treatment for presbyopia. Ophthalmol Times Eur. 2016;12(6):18–20.Google Scholar
  8. 8.
    Garza E, Gomez S, Chayet A, Dishler J. One-year safety and efficacy results of a hydrogel inlay to improve near vision in patients with emmetropic presbyopia. J Refract Surg. 2013;29:166–72.PubMedGoogle Scholar
  9. 9.
    Konstantopoulos A, Mehta J. Surgical compensation of presbyopia with corneal inlays. Expert Rev. 2015;12(3):341–52.Google Scholar
  10. 10.
    Mulet M, Alió J, Knorz M. Hydrogel intracorneal inlays for the correction of hyperopia. Ophthalmology. 2009;116:1455–60.PubMedGoogle Scholar
  11. 11.
    Alió J, Shabayek M, Montes-Mico R, Mulet M, Ahmed A, Merayo J. Intracorneal hydrogel lenses and corneal aberrations. J Refract Surg. 2005;21:247–52.PubMedGoogle Scholar
  12. 12.
    Lindstrom R, Macrae S, Pepose J, Hoopes P. Corneal inlays for presbyopia correction. Curr Opin Ophthalmol. 2013;24:281–7.PubMedGoogle Scholar
  13. 13.
    Arlt E, Krall E, Moussa S, Grabner G, Dexl A. Implantable inlay devices for presbyopia : the evidence to date. Clin Ophthalmol. 2015;9:129–37.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Whitman J, Dougherty P, Parkhurst G, et al. Treatment of presbyopia in emmetropes using a shape-changing corneal inlay: one-year clinical outcomes. Ophthalmology. 2016;123:466–75.PubMedGoogle Scholar
  15. 15.
    Malandrini A, Martone G, Menabuoni L, et al. Bifocal refractive corneal inlay implantation to improve near vision in emmetropic presbyopic patients. J Cataract Refract Surg. 2015;41:1962–72.PubMedGoogle Scholar
  16. 16.
    Limnopoulou A, Bouzoukis D, Kymionis G, et al. Visual outcomes and safety of a refractive corneal inlay for presbyopia using femtosecond laser. J Refract Surg. 2013;29(1):12–8.PubMedGoogle Scholar
  17. 17.
    Alió J, Plaza-Puche A, Montalban R, Javaloy J. Visual outcomes with a single-optic accommodating intraocular lens and a low-addition-power rotational asymmetric multifocal intraocular lens. J Cataract Refract Surg. 2012;38:978–85.PubMedGoogle Scholar
  18. 18.
    Baily C, Kohnen T, Keefe M. Preloaded refractive-addition corneal inlay to compensate for presbyopia implanted using a femtosecond laser: one-year visual outcomes and safety. J Cataract Refract Surg. 2014;40:1341–8.PubMedGoogle Scholar
  19. 19.
    Naroo S, Bilkhu S. Clinical utility of the KAMRA corneal inlay. Clin Ophthalmol. 2016;10:913–9.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Tomita M, Kanamori T, Waring G, et al. Simultaneous corneal inlay implantation and laser in situ keratomileusis for presbyopia in patients with hyperopia, myopia, or emmetropia: six-month results. J Cataract Refract Surg. 2012;38:495–506.PubMedGoogle Scholar
  21. 21.
    Tomita M, Kanamori T, Waring G, Nakamura T, Yukawa S. Small-aperture corneal inlay implantation to treat presbyopia after laser in situ keratomileusis. J Cataract Refract Surg. 2013;39:898–905.PubMedGoogle Scholar
  22. 22.
    Igras E, Caoimh R, Paul O, William P. Long-term results of combined LASIK and monocular small-aperture corneal inlay implantation. J Refract Surg. 2016;32(6):379–84.PubMedGoogle Scholar
  23. 23.
    Huseynova T, Kanamori T, Waring G, Tomita M. Outcomes of small aperture corneal inlay implantation in patients with pseudophakia. J Refract Surg. 2014;30(2):110–5.PubMedGoogle Scholar
  24. 24.
    Lin L, Vilupuru S, Pepose J. Contrast sensitivity in patients with emmetropic presbyopia before and after small-aperture inlay implantation. J Refract Surg. 2016;32:386–93.PubMedGoogle Scholar
  25. 25.
    Alió J, Abbouda A, Huseynli S, Knorz M, Homs M, Durrie D. Removability of a small aperture intracorneal inlay for presbyopia correction. J Refract Surg. 2013;29(8):550–6.PubMedGoogle Scholar
  26. 26.
    Dexl A, Seyeddain O, Riha W, Hohensinn M, Hitzl W, Grabner G. Reading performance after implantation of a small-aperture corneal inlay for the surgical correction of presbyopia:two-year follow-up. J Cataract Refract Surg. 2011;37:525–31.PubMedGoogle Scholar
  27. 27.
    Gooi P, Ahmed I. Review of presbyopic IOLs: multifocal and accommodating IOLs. Int Ophthalmol Clin. 2012;52(2):41–50.PubMedGoogle Scholar
  28. 28.
    Kohnen T. Multifocal IOL technology: a successful step on the journey toward presbyopia treatment. J Cataract Refract Surg. 2008;34(12):2005.PubMedGoogle Scholar
  29. 29.
    Rosen E, Alió J, Dick H, Dell S, Slade S. Efficacy and safety of multifocal intraocular lenses following cataract and refractive lens exchange: meta-analysis of peer-reviewed publications. J Cataract Refract Surg. 2016;42:310–28.PubMedGoogle Scholar
  30. 30.
    Davison J, Simpson M. History and development of the apodized diffractive intraocular lens. J Cataract Refract Surg. 2006;32(5):849–58.PubMedGoogle Scholar
  31. 31.
    Duran-Garcia M, Multifocal Intraocular Lenses AJ. Types and models. In: Alió J, Pikkel J, editors. Multifocal intraocular lenses. The art and the practice. 1st ed. London: Springer Healthcare; 2014.Google Scholar
  32. 32.
    Alió J, Plaza-Puche A, Javaloy J, et al. Comparison of a new refractive multifocal intraocular lens with an inferior segmental near add and a diffractive multifocal intraocular lens. Ophthalmology. 2012;119:555–63.PubMedGoogle Scholar
  33. 33.
    Alió J, Plaza-Puche A, Javaloy J, Ayala M. Comparison of the visual and intraocular optical performance of a refractive multifocal IOL with rotational asymmetry and an apodized diffractive multifocal IOL. J Refract Surg. 2012;28:100–5.PubMedGoogle Scholar
  34. 34.
    McNeely R, Pazo E, Spence A, et al. Comparison of the visual performance and quality of vision with combined symmetrical inferonasal near addition versus inferonasal and superotemporal placement of rotationally asymmetric refractive multifocal intraocular lenses. J Cataract Refract Surg. 2016;42:1721–9.PubMedGoogle Scholar
  35. 35.
    Rocha K. Extended depth of focus IOLs: the next chapter in refractive technology? J Refract Surg. 2017;33(3):46.Google Scholar
  36. 36.
    Breyer D, Kaymak H, Ax T, Kretz F, Auffarth G, Hagen P. Multifocal intraocular lenses and extended depth of focus intraocular lenses. Asia-Pac J Ophthalmol. 2017;6:339–49.Google Scholar
  37. 37.
    Beiko G. Status of accommodative intraocular lenses. Curr Opin Ophthalmol. 2007;18(1):74–9.PubMedGoogle Scholar
  38. 38.
    Liu J-P, Zhang F, Zhao J-Y, Ma L-W, Zhang J-S. Visual function and higher order aberration after implantation of aspheric and spherical multifocal intraocular lenses: a meta-analysis. Int J Ophthalmol. 2013;6(5):690–5.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Rosen E, Alió J, Dick H, Dell S, Slade S. Efficacy and safety of multifocal intraocular lenses following cataract and refractive lens exchange: metaanalysis of peer-reviewed publications. J Cataract Refract Surg. 2016;42:310–28.PubMedGoogle Scholar
  40. 40.
    Alio JL, Grzybowski A, El Aswad A, Romaniuk D. Refractive lens exchange. Surv Ophthalmol. 2014;59:579–98.  https://doi.org/10.1016/j.survophthal.2014.04.004.CrossRefPubMedGoogle Scholar
  41. 41.
    Sachdev G, Sachdev M. Optimizing outcomes with multifocal intraocular lenses. Indian J Ophthalmol. 2017;65:1294–300.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Aliò J, Plaza-Puche A, Férnandez-Buenaga R, Pikkel J, Maldonado M. Multifocal intraocular lenses: an overview. Surv Ophthalmol. 2017;62:611–34.PubMedGoogle Scholar
  43. 43.
    Kamiya K, Hayashi K, Shimizu K, Negishi K, Sato M, Bissen-Miyajima H. Multifocal intraocular lens explantation: a case series of 50 eyes. Am J Ophthalmol. 2014;158:215.220.e1.PubMedGoogle Scholar
  44. 44.
    Lichtinger A, Rootman D. Intraocular lenses for presbyopia correction: past, present and future. Curr Opin Ophthalmol. 2012;23(1):40–6.PubMedGoogle Scholar
  45. 45.
    Prieto J, Bautista M. Visual outcomes after implantation of a refractive multifocal intraocular lens with a +3.00 D addition. J Cataract Refract Surg. 2010;36:1508–16.Google Scholar
  46. 46.
    Akella S, Juthani V. Extended depth of focus intraocular lenses for presbyopia. Curr Opin Ophthalmol. 2018;29:318–22.  https://doi.org/10.1097/ICU.0000000000000490.CrossRefPubMedGoogle Scholar
  47. 47.
    MacRae S, Holladay J, Glasser A, et al. Special report: American Academy of Ophthalmology Task Force consensus statement for extended depth of field intraocular lenses. Ophthalmology. 2017;124:139–41.PubMedGoogle Scholar
  48. 48.
    Savini G, Schiano-Lomoriello D, Balducci N, Barboni P. Visual performance of a new extended depth-of-focus intraocular lens compared to a distance-dominant diffractive multifocal intraocular lens. J Refract Surg. 2018;34(4):228–35.PubMedGoogle Scholar
  49. 49.
    Domínguez-Vicent A, Esteve-Taboada J, Del Águila-Carrasco A, Monsálvez-Romin D, Montés-Micó R. In vitro optical quality comparison of 2 trifocal intraocular lenses and 1 progressive multifocal intraocular lens. J Cataract Refract Surg. 2016;42(1):138–47.PubMedGoogle Scholar
  50. 50.
    Bellucci R, Curatolo M. A new extended depth of focus intraocular lens based on spherical aberration. J Refract Surg. 2017;33(6):389–94.PubMedGoogle Scholar
  51. 51.
    Savini G, Balducci N, Carbonara C, et al. Functional assessment of a new extended depth-of-focus intraocular lens. Eye. 2019;33:404–10.  https://doi.org/10.1038/s41433-018-0221-1.CrossRefPubMedGoogle Scholar
  52. 52.
    Pepose J, Burke J, Qazi M. Accommodating intraocular lenses. Asia-Pac J Ophthalmol. 2017;6:350–7.Google Scholar
  53. 53.
    Siatiri H, Mohammadpour M, Gholami A, Ashrafi E, Siatiri N, Mirshahi R. Optical aberrations, accommodation, and visual quality with a bioanalogic continuous focus intraocular lens after cataract surgery. J Curr Ophthalmol. 2017;29(4):274–81.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Kim Y, Kang K, Yeo Y, Kim K, Siringo F. Consistent pattern in positional instability of polyfocal full-optic accommodative IOL. Int Ophthalmol. 2017;37(6):1299–304.PubMedGoogle Scholar
  55. 55.
    Srinivasan S. Small aperture intraocular lenses: the new kids on the block. J Cataract Refract Surg. 2018;44(8):927–8.PubMedGoogle Scholar
  56. 56.
    Dick H, Elling M, Schultz T. Binocular and monocular implantation of small-aperture intraocular lenses in cataract surgery. J Refract Surg. 2018;34(9):629–31.PubMedGoogle Scholar
  57. 57.
    Dick H, Pioevella M, Vukich J. Prospective multicenter trial of a small-aperture intraocular lens in cataract surgery. J Cataract Refract Surg. 2017;43:956–68.PubMedGoogle Scholar
  58. 58.
    Ang R. Small-aperture intraocular lens tolerance to induced astigmatism. Clin Ophthalmol. 2018;12:1659–64.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Schultz T, Dick H. Small-aperture intraocular lens implantation in a patient with an irregular cornea. J Refract Surg. 2016;32(10):706–8.PubMedGoogle Scholar
  60. 60.
    Trindade C, Trindade B, Trindade F, Werner L, Osher R, Santhiago M. New pinhole sulcus implant for the correction of irregular corneal astigmatism. J Cataract Refract Surg. 2017;43(10):1297–306.PubMedGoogle Scholar
  61. 61.
    De Vries N, Webers C, Montés-Micó R, Ferrer-Blasco T, Nujits R. Visual outcomes after cataract surgery with implantation of a +3.00D or +4.00D aspheric diffractive multifocal intraocular lens: comparative study. J Cataract Refract Surg. 2010;36:1316–22.PubMedGoogle Scholar
  62. 62.
    Alió J, Piñero D, Plaza-Puche A, et al. Visual and optical performance with two different diffractive multifocal intraocular lenses compared to a monofocal lens. J Refract Surg. 2011;27:570–81.PubMedGoogle Scholar
  63. 63.
    Cochener B, Boutillier G, Lamard M, Auberger-Zagnoli C. A comparative evaluation of a new generation of diffractive trifocal and extended depth of focus intraocular lens. J Refract Surg. 2018;34(8):507–14.PubMedGoogle Scholar
  64. 64.
    Carson D, Xu Z, Alexander E, Choi M, Zhao Z, Hong X. Optical bench performance of 3 trifocal intraocular lenses. J Cataract Refract Surg. 2016;42:1361–7.PubMedGoogle Scholar
  65. 65.
    Lee S, Choi M, Xu Z, Zhao Z, Alexander E, Liu Y. Optical bench performance of a novel trifocal intraocular lens compared with a multifocal intraocular lens. Clin Ophthalmol. 2016;10:1031–8.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Ruiz-Mesa R, Abengózar-Vela A, Ruiz-Santos M. A comparative study of the visual outcomes between a new trifocal and an extended depth of focus intraocular lens. Eur J Ophthalmol. 2018;28(2):182–7.PubMedGoogle Scholar
  67. 67.
    García-Pérez J, Gros-Otero J, Sánchez-Ramos C, Blázquez V, Contreras I. Short term visual outcomes of a new trifocal intraocular lens. BMC Ophthalmol. 2017;17:72.  https://doi.org/10.1186/s12886-017-0462-y.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Lawless M, Hodge C, Reich J, et al. Visual and refractive outcomes following implantation of a new trifocal intraocular lens. Eye Vis. 2017;4(4):10.  https://doi.org/10.1186/s40662-017-0076-8.CrossRefGoogle Scholar
  69. 69.
    Akondi V, Pérez-Merino P, Martinez-Enriquez E, et al. Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens. J Cataract Refract Surg. 2017;33(4):257–65.Google Scholar
  70. 70.
    Plaza-Puche A, Alió J, MacRae S, Zheleznyak L, Sala E, Yoon G. Correlating optical bench performance with clinical defocus curves in varifocal and trifocal intraocular lenses. J Refract Surg. 2015;31(5):300–7.PubMedGoogle Scholar
  71. 71.
    Veliká V, Hejsek L, Raiskup F. Clinical results of implantation of two types of multifocal rotationally-asymmetric intraocular lenses. Čes a slov Oftal. 2017;73(1):3–12.Google Scholar
  72. 72.
    Aliò J, Piñero D, Plaza-Puche A, Chan M. Visual outcomes and optical performance of a monofocal intraocular lens and a new-generation multifocal intraocular lens. J Cataract Refract Surg. 2011;37:241–50.PubMedGoogle Scholar
  73. 73.
    Cochener B, Group CS. Clinical outcomes of a new extended range of vision intraocular lens: International Multicenter Concerto Study. J Cataract Refract Surg. 2016;42:1268–75.PubMedGoogle Scholar
  74. 74.
    Gatinel D, Loicq J. Clinically relevant optical properties of bifocal, trifocal, and extended depth of focus intraocular lenses. J Refract Surg. 2016;32(4):273–80.PubMedGoogle Scholar
  75. 75.
    Yoo Y-S, Whang W, Byun Y, et al. Through-focus optical bench performance of extended depth-of-focus and bifocal intraocular lenses compared to a monofocal lens. J Refract Surg. 2018;34(4):236–43.PubMedGoogle Scholar
  76. 76.
    Camps V, Tolosa A, Piñero D, de Fez D, Caballero M, Miret J. In vitro aberrometric assessment of a multifocal intraocular lens and two extended depth of focus IOLs. J Ophthalmol. 2017;2017:7095734.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Escandón-García S, Ribeiro F, McAlinden C, Queirós A, González-Méijome MJ. Through-focus vision performance and light disturbances of 3 new intraocular lenses for presbyopia correction. J Ophthalmol. 2018;2018:6165493.  https://doi.org/10.1155/2018/6165493.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kamiya K, Igarashi A, Hayashi K, et al. A multicenter prospective cohort study on refractive surgery in 15,011 eyes. Am J Ophthalmol. 2017;175:159–68.PubMedGoogle Scholar
  79. 79.
    Werner L, Olson R, Mamalis N. New technology IOL optics. Ophthalmol Clin North Am. 2006;19:469–83.PubMedGoogle Scholar
  80. 80.
    Alió J, Piñero D, Plaza-Puche A. Visual outcomes and optical performance with a monofocal intraocular lens and a new-generation single-optic accommodating intraocular lens. J Cataract Refract Surg. 2010;36:1656–64.PubMedGoogle Scholar
  81. 81.
    Alió J, Plaza-Puche A, Montalban R, Ortega P. Near visual outcomes with single optic and dual-optic accommodating intraocular lenses. J Cataract Refract Surg. 2012;38:1568–75.PubMedGoogle Scholar
  82. 82.
    Liang Y-L, Jia S-B. Clinical application of accommodating intraocular lens. Int J Ophthalmol. 2018;11(6):1028–37.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Kramer G, Werner L, Neuhann T, Tetz M, Mamalis N. Anterior haptic flexing and in-the-bag subluxation of an accommodating intraocular lens due to excessive capsular bag contraction. J Cataract Refract Surg. 2015;41:2010–3.PubMedGoogle Scholar
  84. 84.
    Page T, Whitman J. A stepwise approach for the management of capsular contraction syndrome in hinge-based accommodative intraocular lenses. Clin Ophthalmol. 2016;10:1039–46.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Jardim D, Soloway B, Starr C. Asymmetric vault of an accommodating intraocular lens. J Cataract Refract Surg. 2006;32(2):347–50.PubMedGoogle Scholar
  86. 86.
    Menapace R, Findl O, Kriechbaum K. Accommodating intraocular lenses: a critical review of present and future concepts. Graefes Arch Clin Exp Ophthalmol. 2007;245:473–89.PubMedGoogle Scholar
  87. 87.
    Saiki M, Negishi K, Dogru M, Yamaguchi T, Tsubota K. Biconvex posterior chamber accommodating intraocular lens implantation after cataract surgery: long-term outcomes. J Cataract Refract Surg. 2010;36:603–8.PubMedGoogle Scholar
  88. 88.
    Wolffsohn J, Davies L, Gupta N, et al. Mechanism of action of the tetraflex accommodative intraocular lens. J Refract Surg. 2010;26:858–62.PubMedGoogle Scholar
  89. 89.
    Cleary G, Spalton D, Gala K. A randomized intraindividual comparison of the accommodative performance of the bag-in-the-lens intraocular lens in presbyopic eyes. Am J Ophthalmol. 2010;150(5):619–27.PubMedGoogle Scholar
  90. 90.
    Nguyen N, Sietz B, Reese S, Langenbucher A, Küchle M. Accommodation after Nd:YAG capsulotomy in patients with accommodative posterior chamber lens 1CU. Graefes Arch Clin Exp Ophthalmol. 2005;243(2):120–6.PubMedGoogle Scholar
  91. 91.
    Bohórquez V, Alarcon R. Long-term reading performance in patients with bilateral dual-optic accommodating intraocular lenses. J Cataract Refract Surg. 2010;36:1880–6.PubMedGoogle Scholar
  92. 92.
    Peris-Martínez C, Díez-Ajenjo A, García-Domene C. Short-term results with the Synchrony lens implant for correction of presbyopia following cataract surgery. J Emmetropia. 2013;4:137–43.Google Scholar
  93. 93.
    Ale J, Manns F, Ho A. Magnifications of single and dual element accommodative intraocular lenses: paraxial optics analysis. Ophthalmic Physiol Opt. 2011;31(1):7–16.PubMedGoogle Scholar
  94. 94.
    Kohl J, Werner L, Ford J, et al. Long-term uveal and capsular biocompatibility of a new accommodating intraocular lens. J Cataract Refract Surg. 2014;40:2113–9.PubMedGoogle Scholar
  95. 95.
    Alió J, Ben-nun J, Rodríguez-Prats J, Plaza-Puche A. Visual and accommodative outcomes 1 year after implantation of an accommodating intraocular lens based on a new concept. J Cataract Refract Surg. 2009;35:1671–8.PubMedGoogle Scholar
  96. 96.
    Alió J, Simonov A, Plaza-Puche A, et al. Visual outcomes and accommodative response of the lumina accommodative intraocular lens. Am J Ophthalmol. 2016;164:37–48.PubMedGoogle Scholar
  97. 97.
    Sheppard A, Bashir A, Wolffsohn J, Davies L. Accommodating intraocular lenses: a review of design concepts, usage and assessment methods. Clin Exp Optom. 2010;93(6):441–52.PubMedGoogle Scholar
  98. 98.
    Boyd B, Agarwal S, Agarwal A, Agarwal A. Lasik and beyond Lasik: wavefront analysis and customized ablation. Highlights of Ophthalmology Int’l: Panama; 2002.Google Scholar
  99. 99.
    Manche E, Haw W. Wavefront-guided laser in situ keratomileusis (LASIK) versus wavefront-guided photorefractive keratectomy (PRK): a prospective randomized eye-to-eye comparison (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc. 2011;109:201–20.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Vestergaard A. Past and present of corneal refractive surgery: a retrospective study of long-term results after photorefractive keratectomy and a prospective study of refractive lenticule extraction. Acta Ophthalmol. 2014;92 Thesis(2):1–21.Google Scholar
  101. 101.
    Vestergaard A, Hjortdal J, Ivarsen A, Work K, Grauslund J, Sjølie A. Long-term outcomes of photorefractive keratectomy for low to high myopia: 13 to 19 years of follow-up. J Refract Surg. 2013;29(5):312–9.PubMedGoogle Scholar
  102. 102.
    Spadea L, Sabetti L, D’Alessandri L, Balestrazzi E. Photorefractive keratectomy and LASIK for the correction of hyperopia: 2-year follow-up. J Refract Surg. 2006;22:131–6.PubMedGoogle Scholar
  103. 103.
    Reinstein D, Archer T, Gobbe M. The history of LASIK. J Refract Surg. 2012;28(4):291–8.PubMedGoogle Scholar
  104. 104.
    Kamiya K, Igarashi A, Hayashi K, et al. A multicenter retrospective survey of refractive surgery in 78,248 eyes. J Refract Surg. 2017;33(9):598–602.PubMedGoogle Scholar
  105. 105.
    Hersh P, Brint S, Maloney R, et al. Photorefractive keratectomy versus laser in situ keratomileusis for moderate to high myopia: a randomized protective study. Ophthalmology. 1998;105:1512–23.PubMedGoogle Scholar
  106. 106.
    Torky M, Al Zafiri Y, Khattab A, Farag R, Awad E. Visumax femtolasik versus Moria M2 microkeratome in mild to moderate myopia: efficacy, safety, predictability, aberrometri changes and flap thickness predictability. BMC Ophthalmol. 2017;17:125.  https://doi.org/10.1186/s12886-017-0520-5.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Aristeidou A, Taniguchi E, Tsatsos M, et al. The evolution of corneal and refractive surgery with the femtosecond laser. Eye Vis. 2015;2:12.Google Scholar
  108. 108.
    Ikeda T, Shimizu K, Igarashi A, Kasahara S, Kamiya K. Twelve-year follow-up of laser in situ keratomileusis for moderate to high myopia. Biomed Res Int. 2017;2017:9391436.  https://doi.org/10.1155/2017/9391436PubMedPubMedCentralGoogle Scholar
  109. 109.
    Frings A, Richard G, Steinberg J, Druchkiv V, Linke S, Katz T. LASIK and PRK in hyperopic astigmatic eyes: is early retreatment advisable? Clin Ophthalmol. 2016;10:565–70.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Jaycock P, O’Brart D, Rajan M, Marshall J. 5-year follow-up of LASIK for hyperopia. Ophthalmology. 2005;112(2):191–9.PubMedGoogle Scholar
  111. 111.
    Wolle M, Randleman J, Woodward M. Complications of refractive surgery: ectasia after refractive surgery. Int Ophthalmol Clin. 2016;56(2):129–41.PubMedCentralGoogle Scholar
  112. 112.
    Sajjadi V, Ghoreishi M, Jafarzadehpour E. Refractive and aberration outcomes after customized photorefractive keratectomy in comparison with customized femtosecond laser. Med Hypothesis Discov Innov Ophthalmol. 2015;4(4):136–42.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Reinstein D, Carp G, Archer T, et al. In: Reinstein D, Carp G, Archer T, editors. The Surgeon’s Guide to SMILE: small incision lenticule extraction. Thorofare, NJ: SLACK; 2018.Google Scholar
  114. 114.
    Reinstein D, Archer T, Gobbe M. Small incision lenticule extraction (SMILE) history, fundamentals of a new refractive surgery technique and clinical outcomes. Eye Vis. 2014;1:3.Google Scholar
  115. 115.
    Sekundo W, Kunert K, Russmann C, et al. First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: six-month results. J Cataract Refract Surg. 2008;34(9):1513–20.PubMedGoogle Scholar
  116. 116.
    Sekundo W, Gertnere J, Bertelmann T, Solomatin I. One-year refractive results, contrast sensitivity, high-order aberrations and complications after myopic small-incision lenticule extraction (ReLEx SMILE). Graefes Arch Clin Exp Ophthalmol. 2014;252(5):837–43.PubMedGoogle Scholar
  117. 117.
    Vestergard A, Ivarsen A, Asp S, Hjortdal J. Small-incision lenticule extraction for moderate to high myopia: predictability, safety, and patient satisfaction. J Cataract Refract Surg. 2012;38:2003–10.Google Scholar
  118. 118.
    Kataoka T, Nishida T, Murata A, et al. Control-matched comparison of refractive and visual outcomes between small incision lenticule extraction and femtosecond laser-assisted LASIK. Clin Ophthalmol. 2018;12:865–73.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Han T, Xu Y, Han X, et al. Three-year outcomes of small incision lenticule extraction (SMILE) and femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK) for myopia and myopic astigmatism. Br J Ophthalmol. 2019;103:565–8.  https://doi.org/10.1136/bjophthalmol-2018-312140.CrossRefPubMedGoogle Scholar
  120. 120.
    Titiyal J, Kaur M, Rathi A, Falera R, Chaniyara M, Sharma N. Learning curve of small incision lenticule extraction: challenges and complications. Cornea. 2017;36(11):1377–82.PubMedGoogle Scholar
  121. 121.
    Krueger R, Meister C. A review of small incision lenticule extraction complications. Curr Opin Ophthalmol. 2018;29(4):292–8.PubMedGoogle Scholar
  122. 122.
    Liu Y, Teo E, Ang H, et al. Biological corneal inlay for presbyopia derived from small incision lenticule extraction (SMILE). Sci Rep. 2018;8:1831.  https://doi.org/10.1038/s41598-018-20267-7.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Jacob S, Kumar D, Agarwal A, Agarwal A, Aravind R, Saijimol A. Preliminary evidence of successful near vision enhancement with a new technique: PrEsbyopic Allogenic Refractive Lenticule (PEARL) corneal inlay using a SMILE lenticule. J Refract Surg. 2017;33(4):224–9.PubMedGoogle Scholar
  124. 124.
    Titiyal J, Shaikh F, Kaur M, Rathi A. Small incision lenticule extraction (SMILE) techniques: patient selection and perspectives. Clin Ophthalmol. 2018;12:1685–99.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Huang D, Schallhorn S, Sugar A, et al. Phakic intraocular lens implantation for the correction of myopia: a report by the American Academy of Ophthalmology. Ophthalmology. 2009;116:2244–58.PubMedGoogle Scholar
  126. 126.
    Alió J, Mulet M. Presbyopia correction with an anterior chamber phakic multifocal intraocular lens. Ophthalmology. 2005;112(8):1368–74.PubMedGoogle Scholar
  127. 127.
    Baïkoff G, Matach G, Fontaine A, Ferraz C, Spera C. Correction of presbyopia with refractive multifocal phakic intraocular lenses. J Cataract Refract Surg. 2004;30(7):1454–60.PubMedGoogle Scholar
  128. 128.
    Alió J, Toffaha B, Peña-Garcia P, Sádaba L, Barraquer R. Phakic intraocular lens explantation: causes in 240 cases. J Refract Surg. 2015;31(1):30–5.PubMedGoogle Scholar
  129. 129.
    Aerts A, Jonker S, Wielders L, et al. Phakic intraocular lens: two-year results and comparison of endothelial cell loss with iris-fixated intraocular lenses. J Cataract Refract Surg. 2015;41:2258–65.PubMedGoogle Scholar
  130. 130.
    Ferreira T, Portelinha J. Endothelial distance after phakic iris-fixated intraocular lens implantation: a new safety reference. Clin Ophthalmol. 2014;8:225–61.Google Scholar
  131. 131.
    Alió J, Abbouda A, Peña-Garcia P. Anterior segment optical coherence tomography of long-term phakic angle-supported intraocular lenses. Am J Ophthalmol. 2013;156(5):894–901.PubMedGoogle Scholar
  132. 132.
    Rosman M, Alió J, Ortiz D, Pérez-Santonja J. Refractive stability of LASIK with the VISX 20/20 excimer laser vs ZB5M phakic IOL implantation in patients with high myopia (>−10.00D): a 10-year retrospective study. J Refract Surg. 2011;27(4):279–86.PubMedGoogle Scholar
  133. 133.
    Alió J, De la Hoz F, Pérez-Santonja J, Ruiz-Moreno J, Quesada J. Phakic anterior chamber lenses for the correction of myopia: a 7-year cumulative analysis of complications in 263 cases. Ophthalmology. 1999;106:458–66.PubMedGoogle Scholar
  134. 134.
    Gimbel H, Norton N, Amritanand A. Angle-supported phakic intraocular lenses for the correction of myopia: three-year follow-up. J Cataract Refract Surg. 2015;41:2179–89.PubMedGoogle Scholar
  135. 135.
    Qasem Q, Kirwan C, O’Keefe M. 5-year prospective follow-up of Artisan phakic intraocular lenses for the correction of myopia, hyperopia and astigmatism. Ophthalmologica. 2010;224(5):283–90.PubMedGoogle Scholar
  136. 136.
    Karimian F, Baradaran-Rafii A, Hashemian S, et al. Comparison of three phakic intraocular lenses for correction of myopia. J Ophthalmic Vis Res. 2014;9(4):427–33.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Sedaghat M, Ansari-Astaneh M, Zarei-Ghanavati M, Davis S, Sikder S. Artisan iris-supported phakic IOL implantation in patients with keratoconus: a review of 16 eyes. J Refract Surg. 2011;27(7):489–93.PubMedGoogle Scholar
  138. 138.
    Dick H, Budo C, Malecaze F, et al. Foldable Artiflex phakic intraocular lens for the correction of myopia: two-year follow-up results of a prospective European multicenter study. Ophthalmology. 2009;116(4):671–7.PubMedGoogle Scholar
  139. 139.
    Ozertürk Y, Kuboaglu A, Sari E, et al. Foldable iris-fixated phakic intraocular lens implantation for the correction of myopia: two years of follow-up. Indian J Ophthalmol. 2012;60(1):23–8.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Stulting R, Group UVS. Three-year results of Artisan/Verisyse phakic intraocular lens implantation: results of the United States Food and Drug Administration clinical trial. Ophthalmology. 2008;115(3):464–72.PubMedGoogle Scholar
  141. 141.
    Simões P, Ferreira T. Iris-fixated intraocular lenses for ametropia and aphakia. Med Hypothesis Discov Innov Ophthalmol. 2014;3(4):116–22.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Davidorf J, Zaldivar R, Oscherow S. Posterior chamber phakic intraocular lens for hyperopia of +4 to +11 diopters. J Refract Surg. 1998;14(3):306–11.PubMedGoogle Scholar
  143. 143.
    Dougherty P, Taylor T. Refractive outcomes and safety of the implantable collamer lens in young low-to-moderate myopes. Clin Ophthalmol. 2017;11:273–7.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Kamiya K, Shimizu K, Igarashi A, et al. Posterior chamber phakic intraocular lens implantation: comparative, multicentre study in 351 eyes with low-to-moderate or high myopia. Br J Ophthalmol. 2017;0:1–5.  https://doi.org/10.1135/bjophthalmol-2017-310164.CrossRefGoogle Scholar
  145. 145.
    Pesando P, Ghiringhello M, Tagliavacche P. Posterior chamber collamer phakic intraocular lens for myopia and hyperopia. J Refract Surg. 1999;15(4):415–23.PubMedGoogle Scholar
  146. 146.
    Kobashi H, Kamiya K, Igarashi A, Matsumura K, Komatsu M, Shimizu K. Long-term quality of life after posterior chamber phakic intraocular lens implantation and after wavefront-guided laser in situ keratomileusis for myopia. J Cataract Refract Surg. 2014;40:2019–24.PubMedGoogle Scholar
  147. 147.
    Hashemi H, Miraftab M, Asgari S. Comparison of the visual outcomes between PRK-MMC and phakic IOL implantation in high myopic patients. Eye. 2014;28:1113–8.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Hassaballa M, Macky T. Phakic intraocular lenses outcomes and complications: Artisan vs Visian ICL. Eye. 2011;25(10):1365–70.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Ben-nun J. The NuLens Accommodating Intraocular Lens. Ophthalmol Clinic North Am. 2006;19:129–134.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.VissumAlicanteSpain
  2. 2.Division of OphthalmologyUniversidad Miguel HernándezAlicanteSpain

Personalised recommendations