Advertisement

African Swine Fever in Sub-Saharan African Countries

  • Emmanuel Couacy-Hymann
Chapter

Abstract

African swine fever (ASF) is a dreadful hemorrhagic disease of domestic pig and European wild boars that causes up to 100% mortality in a naive population with a wide range of clinical symptoms and lesions depending upon the virulence of the virus strain involved and host factors. It is due to a unique double-stranded DNA virus, ASF virus (ASFV), an arbovirus harbored by soft ticks of the Ornithodoros spp. as vector and maintained in a sylvatic cycle between the soft ticks and the natural hosts, warthog, and bush pigs. However, there is also a domestic cycle for the persistence of the virus involving pig to pig transmission mainly observed in West and Central Africa where soft ticks do not exist and the disease is endemic. From Africa the disease had spread to West Europe, South America, and the Caribbean. The disease had been eradicated from these countries, except Sardinia in Italy. Nowadays the disease is reported in several countries of Eastern Europe including the Caucasus region and the Federation of Russia.

The control of ASF requires some prerequisites such as a laboratory able to diagnose quickly the disease and the veterinary services with adequate capacity to react. Furthermore, the control requires to prevent contact between domestic pigs and any sources of the virus and soft ticks where it exists. In addition, the effective cooperation of all stakeholders in a control and eradication plan is highly needed. Since free-ranging farm system with low biosecurity is common in Africa, approximately 80% of the domestic population, and that contributes to the maintenance of the virus, upgrading the farming system including an improved biosecurity level will effectively help to control the disease.

Keywords

African swine fever Virus Arbovirus Africa DNA Arthropod Pig 

References

  1. Achenbach JE, Gallardo C, Nieto-Pelegr E, Rivera-Arroyo B, Degefa-Negi T, Arias M, Jenberie S, Mulisa DD, Gizaw D, Gelaye E, Chibssa TR, Belaye B, Loitsch A, Forsa M, Yami M, Diallo A, Soler A, Lamien CE, Sanchez-Vizca JM. Identification of a new genotype of African swine fever virus in domestic pigs from Ethiopia. Transbound Emerg Dis. 2017;64:1393–404.  https://doi.org/10.1111/tbed.12511.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agüero M, Fernández J, Romero L, Sánchez Mascaraque C, Arias M, Sánchez-Vizcaíno JM. Highly sensitive PCR assay for routine diagnosis of African swine fever virus in clinical samples. J Clin Microbiol. 2003;41(9):4431–4.  https://doi.org/10.1128/JCM.41.9.4431-4434.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson EC, Hutchings GH, Mukarati N, Wilkinson PJ. African swine fever virus infection of the bush pig (Potamochoerus porcus) and its significance in the epidemiology of the disease. Vet Microbiol. 1998;62:1–15.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Babalobi OO, Olugasa BO, Oluwayelu DO, Ijagbone IF, Ayoade GO, Agbede SA. Analysis and evaluation of mortality losses of the 2001 African swine fever outbreak, Ibadan, Nigeria. Trop Anim Health Prod. 2007;39:533–42.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Baroudy BM, Venkatesam S, Moss B. Incompletely base-paired flip-flop terminal loops link the two strands of the Vaccinia virus genome into one uninterrupted polynucleotide chain. Cell. 1982;28:315–24.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bastos ADS, Penrith ML, Crucière C, Edrich JL, Hutchings G, Roger F, Couacy-Hymann E, Thompson GR. Genotyping field strains of African swine fever virus by partial p72 gene characterization. Arch Virol. 2003;148:693–706.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bastos AD, Penrith ML, Macome F, Pinto F, Thomson GR. Co-circulation of two genetically distinct viruses in an outbreak of African swine fever in Mozambique: no evidence for individual co-infection. Vet Microbiol. 2004;103:169–82.  https://doi.org/10.1016/j.vetmic.2004.09.003.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Beltrán-Alcrudo D, Arias M, Gallardo C, Kramer SA, Penrith M-L, Kamata A. African swine fever-detection and diagnosis. A manual for veterinarians. FAO, N° 19; 2017. 93p.Google Scholar
  9. Blasco R, Aguero M, Almendral IM, Vinuela E. Variable and constant regions in African swine fever virus DNA. Virology. 1989;168:330–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Blome S, Gabriel C, Diezte K, Breithaupt A, Beer M. High virulenceof African swine fever virus caucasus isolate in European wild boars of allages. Emerg Infect Dis. 2012;18(4):708.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Blome S, Gabriel C, Beer M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res. 2013;173:122–30.  https://doi.org/10.1016/j.viruses.2012.10.026.CrossRefPubMedGoogle Scholar
  12. Boshoff CI, Bastos ADS, Gerber LJ, Vosloo W. Genetic characterization of African swine fever viruses from outbreaks in southern Africa (1973–1999). Vet Microbiol. 2007;121:45–55.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Brookes SM, Hyatt AD, Wise T, Parkhouse RME. Intracellular virus DNA distribution and the acquisition of the nucleoprotein core during African swine fever virus particle assembly: ultrastructural in Situ hybridisation and DNase-gold labelling. Virology. 1998;249:175–8.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Burrage TG. African swine fever virus infection in Ornithodoros ticks. Virus Res. 2013;173:131–9.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Carrascosa JL, Carazo JM, Carrascosa AL, GarcõÂa N, Santisteban A, Vinuela E. General morphology and capsid fine structure of African swine fever virus. Virology. 1984;132:160–72.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Costard S, Wieland B, de Glanville W, Jori F, Rowlands R, Vosloo W, Roger F, Pfeiffer DU, Dixon KL. African swine fever: how can global spread be prevented? Philos Trans R Soc Lond B Biol Sci. 2009;364:2683–96.  https://doi.org/10.1098/rstb.2009.0098.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Costard S, Wieland B, de Glanville W, Jori F, Rowlands R, Vosloo W, Roger F, Pfeiffer DU, Dixon LK. African swine fever: how can global spread be prevented? Philos Trans R Soc Lond B Biol Sci. 2012;364:2683–96.CrossRefGoogle Scholar
  18. Costard S, Mur L, Lubroth J, Sanhez-Vizcaino JM, Pfeiffer DU. Epidemiology of African swine fever virus. Virus Res. 2013;173(1):191–7.PubMedCrossRefGoogle Scholar
  19. Couacy-Hymann E. African swine fever prevention and control strategy in West Africa. Technical workshop on sub-regional strategy for the prevention and control of African swine fever. 4–6 Sept, Accra; 2012.Google Scholar
  20. Couacy-Hymann E. FAO mission report on FAO IDENTIFY project OSRO/INT/902/USA B02 “Support for strengthening animal health laboratory capacities in hot spot regions to combat zoonotic diseases that pose a significant public health threat”. Addis-Ababa, 20–27 Jul; 2014.Google Scholar
  21. Couacy-Hymann E, Kouakou V, Godji P. Second meeting of IAEA Coordinated Research Project (CRP)—Early and rapid diagnosis and control of TADs—African swine fever, 20–24 Jun, Vienna; 2016.Google Scholar
  22. Couacy-Hymann E, Kouakou KV, Achenbach JE, Kouadio L, Koffi YM, Godji HP, Kouassi EA, Oulaï J, Pell-Minhiaud HJ, Lamien CE. Re‐emergence of genotype I of African swine fever virus in Ivory Coast. Transbound Emerg Dis. 2019;66:882–96.  https://doi.org/10.1111/tbed.13098.CrossRefPubMedPubMedCentralGoogle Scholar
  23. De Tray DE. African swine fever in warthog (Phacochoerus aethiopicus). J Am Vet Med Assoc. 1957;130:537–40.Google Scholar
  24. Dietze, K., Beltran-Alcrudo, D., Khomenko S, Seck B, Pinto J, Diallo A, Lamien C, Lubroth J, Martin V. African swine fever (ASF) recent developments—timely updates. Focus on No. 6. Rome: FAO; 2012. Available at http://www.fao.org/docrep/016/ap372e/ap372e.pdf. Accessed 30 Sept 2012.
  25. Dixon LK, Twigg SRF, Baylis SA, Vydelingum S, Bristow C, Hammond JM, Smith GL. Nucleotide sequence of a 55 kbp region from the right end of the genome of a pathogenic African swine fever virus isolate (Malawi LIL20/1). J Gen Virol. 1994;75:1655–84.CrossRefGoogle Scholar
  26. Dixon LK, Escribano JM, Martins C, Rock DL, Salas ML, Wilkinson PJ. The asfarviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA, editors. Virus taxonomy. Eighth report of the international committee on taxonomy of viruses. London: Elsevier Academic Press; 2005. p. 135–43.Google Scholar
  27. Edoukou DG. Porciculture et épizootie de peste porcine africaine au Togo. Note d’information. Mars 2000. 12 p.Google Scholar
  28. Edwards S, Fukusho A, Lefèvre PC, Lipowski A, Pejsak Z, Roehe P, Westergaard J. Classical swine fever: the global situation. Vet Microbiol. 2000;73:103–19.PubMedCrossRefGoogle Scholar
  29. El-Hicheri K, Gómez-Tejedor C, Penrith M-L, Davies G, Douati A, Edoukou GD, Wojciechowski K. L’épizootie de peste porcine africaine de 1996 en Côte d’Ivoire. Rev Sci Tech Off Int Epiz. 1998;17:660–73.CrossRefGoogle Scholar
  30. FAO. 1997. FAO: Outbreak of ASF in Benin. Epres, September 1997. www.fao.org/News/1997/970905-e.hym
  31. FAO. Rapport de l’atelier régional sur la peste porcine africaine en Afrique de l’Ouest. Coordination du PACE au Togo. Lomé, Togo, 29–31 Oct; 2001. 21 p.Google Scholar
  32. FAO, AU/IBAR, ILRI. Regional strategy for the control of African swine fever in Africa; 2017. p. 46. http://www.fao.org/africa
  33. Fernandez-Pinero J, Gallardo C, Elizalde M, Robles A, Gomez C, Bishop R, Health L, Couacy-Hymann E, Fasina FO, Pelayo V, Soler A, Arias M. Molecular diagnosis of African swine fever by a new real-time PCR using universal probe library. Transbound Emerg Dis. 2013;60:48–58.  https://doi.org/10.1111/j.1865-1682.2012.01317.x.CrossRefPubMedGoogle Scholar
  34. Gallardo C, Anchuelo R, Pelayo V, Poudevigne F, Leon T, Nzoussi J, Bishop R, Pérez C, Soler A, Nieto R, Martín H, Arias M. African swine fever virus p72 genotype IX in domestic pigs, congo, 2009. Emerg Infect Dis. 2011;17(8):1556–8.  https://doi.org/10.3201/eid1708.101877.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gallardo C, Fernandez-Pinero J, Pelayo V, Gazaev I, Markowska- Daniel I, Pridotkas G, Nieto R, Fernandez-Pacheco P, Bokhan S, Nevolko O, Drozhzhe Z, Perez C, Soler A, Kolvasov D, Arias M. Genetic variation among African swine fever genotype II viruses, eastern and central Europe. Emerg Infect Dis. 2014;20:1544–7.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gilford-Gonzalez D, Hanotte D. Domesticating animals in Africa: implications of genetic and archaeological findings. J World Prehist. 2011;24:1–23.  https://doi.org/10.1007/s1096-010-9042-2.CrossRefGoogle Scholar
  37. Gómez-Villamandos JC, Bautista MJ, Sánchez-Cordón PJ, Carrasco L. Pathology of African swine fever: the role of monocyte-macrophage. Virus Res. 2013;173:140–9.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Gonzalez A, Talavera A, Almendral JM, Vinuela. Hairpin loop structure of African swine fever virus DNA. Nucleic Acids Res. 1986;14:6835–44.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Haines FJ, Hofmann MA, King DP, Drew TW, Crooke HR. Development and validation of a multiplex, real-time RT PCR assay for the simultaneous detection of classical and African swine fever viruses. PLoS One. 2013;7(7):e71019.CrossRefGoogle Scholar
  40. Heinz FX, Collett MS, Purcell RH, Gould EA, Howard CR, Houghton M, Moormann JM, Rice CM, Thiel H-J. Family flaviviridae. In: van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB, editors. Virus taxonomy. Seventh report of the International Committee on Taxonomy of Viruses. San Diego, CA: Academic Press; 2000. p. 859–78.Google Scholar
  41. Hess WR. African Swine Fever: a reassessment. Adv Vet Sci Comp Med. 1981;25:39–67.PubMedGoogle Scholar
  42. Howey EB, O'Donnell V, de Carvalho Ferreira HC, Borca MV, Arzt J. Pathogenesis of highly virulent African swine fever virus in domestic pigs exposed via intraoropharyngeal, intranasopharyngeal, and intramuscular inoculation, and by direct contact with infected pigs. Virus Res. 2013;178(2):328–39.  https://doi.org/10.2016/j.virusres.2013.09.024.CrossRefPubMedGoogle Scholar
  43. Kleiboeker SB, Scoles GA. Pathogenesis of African swine fever virus in Ornithodoros ticks. Anim Health Res Rev. 2001;2(2):121–8.PubMedCrossRefGoogle Scholar
  44. Kouakou KV, Michaud V, Biego HG, HPG G, Kouakou AV, Mossoun AM, Awuni JA, Minoungou GL, Aplogan GL, Awoumé FK, Albina E, Lancelot R, Couacy-Hymann E. African and classical swine fever situation in Ivory-Coast and neighboring countries, 2008-2013. Acta Trop. 2017;166:241–8.PubMedCrossRefGoogle Scholar
  45. Kuznar J, Salas ML, Vinuela E. DNA-dependent RNA polymerase in African swine fever virus. Virology. 1980;101:169–75.PubMedCrossRefGoogle Scholar
  46. Le Potier M-F, Marcé C. Nouvelle avancée de la Peste Porcine Africaine aux frontières de l’Europe: la Biélorussie atteinte. African swine fever is in the vicinity of Europe: first case notified in Belarus. Bull Epid Santé Animal Alim. 2013;58:23–4.Google Scholar
  47. Leblanc N, Corley M, Fernandez Pinero J, Gallardo C, Massembe C, Okurut AR, Health L, Van Heerden J, Sanhez-Vizcaino JM, Stahl K, Belak S. Development of a suspension Microarray for the genotyping of African swine fever virus targeting the SNPs in the C-terminal end of the p72 gene region of the genome. Transbound Emerg Dis. 2012;60(4):378–83.PubMedCrossRefGoogle Scholar
  48. Levathes LE. When China ruled the seas. The treasure fleet of the Dragon Throne, 1405–1433. New York: Oxford University Press; 1994.Google Scholar
  49. Lubisi BA, Bastos AD, Dwarka RM, Vosloo W. Intra-genotypic resolution of African swine fever viruses from an East African domestic pig cycle: a combined p72-CVR approach. Virus Genes. 2007;35:729–35.  https://doi.org/10.1007/s11262-007-0148-2.CrossRefPubMedGoogle Scholar
  50. McMenamy J, Hjertner B, McNeillya F, Uttenthal A, Gallardo C, Adair B, Allana G. Sensitive detection of African swine fever virus using real-time PCR with a 5’conjugated minor groove binder probe. J Virol Methods. 2010;168:141–6.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Mebus CA. African swine fever. Adv Virus Res. 1988;35:251–69.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Michaud V, Randriamparany T, Albina E. Comprehensive phylogenetic reconstructions of African swine fever virus: proposal for a new Classification and molecular dating of the virus. PLos One. 2013;8(7):e69662.  https://doi.org/10.1371/journal.pone.0069662.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Misinzo G, Gwandu FB, Biseko EZ, Kulaya NB, Mdimi L, Kwavi DE, Sikombe CD, Makange M, Madege MJ. Neisseria denitrificans restriction endonuclease digestion distinguishes African swine fever viruses of eastern from southern African origin circulating in Tanzania. Res Opin Anim Vet Sci. 2014;4(4):212–7.Google Scholar
  54. Montgomery RE. On a form of swine fever occurring in British East Africa (Kenya Colony). J Comp Pathol. 1921;34:159–91.CrossRefGoogle Scholar
  55. Nix RJ, Gallardo C, Hutchings G, Blanco E, Dixon LK. Molecular epidemiology of African swine fever virus studied by analysis of four variable genome regions. Arch Virol. 2006;151:2475–94.PubMedCrossRefGoogle Scholar
  56. Odemuyiwa SO, Adebayo IA, Ammerlaan W, Ajuwape ATP, Alaka OO, Oyedele OI, Soyelu KO, Olaleye DO, Otesile EB, Muller CP. An outbreak of African swine fever in Nigeria: virus isolation and molecular characterization of the VP72 gene of a first isolate from West Africa. Virus Genes. 2000;20:139–42.PubMedCrossRefGoogle Scholar
  57. OIE. African swine fever in Burkina Faso; 2004. http://www.oie.int/eng/info/hebdo/AIS17.HTM. Consulted 24 Sept 2012.
  58. OIE (World Organisation for Animal Health). Report archive; 2014. Available at http://www.oie.int/wahis_2/public/wahid.php/Diseaseinformation/reportarchive. Accessed 24 Jan 2014.
  59. Oura C. Overview of African swine fever. In: Kahn CM, Line S, Aiello SE, editors. The Merck veterinary manual. 10. Whitehouse Station, NJ: Merck and Co; 2013. Available at: http://www.merckvetmanual.com/mvm/generalized_conditions/african_swine_fever/overview_of_african_swine_fever.html. Accessed 15 Oct 2015.
  60. Oura CAL, Powell PP, Anderson E, Parkhouse RME. The pathogenesis of African swine fever in the resistant bushpig. J Gen Virol. 1998;79:1439–43.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Penrith ML. African swine fever. Onderstepoort J Vet Res. 2009;76:91–5.CrossRefGoogle Scholar
  62. Penrith ML, Vosloo W. Review of African swine fever: transmission, spread and control. J S Afr Vet Assoc. 2009;80(2):58–62.PubMedCrossRefGoogle Scholar
  63. Penrith ML, Thompson GR, Bastos ADS. African swine fever. In: Coetzer JAW, Tustin RC, editors. Infectious diseases of livestock, vol. 3. 2nd ed. Cape Twon: Oxford University Press; 2004. p. 1088–119.Google Scholar
  64. Plowright W, Parker J, Pierce MA. African swine fever virus in ticks (Ornithodoros moubata Murray) collected from animal burrows in Tanzania. Nature. 1969;221:1071–3.CrossRefGoogle Scholar
  65. Plowright W, Perry CT, Pierce MA, Parker J. Experimental infection of the argasid tick, Ornithodoros moubata porcinus, with African swine fever virus. Arch Gesamte Virusforsch. 1970a;31:33–50.PubMedCrossRefGoogle Scholar
  66. Plowright W, Perry CT, Pierce MA. Transovarial infection with African swine fever virus in the argasid tick, Ornithodoros moubata porcinus, Walton. Res Vet Sci. 1970b;11:582–4.PubMedCrossRefGoogle Scholar
  67. Plowright W, Perry CT, Greig A. Sexual transmission of African swine fever virus in the tick, Ornithodoros moubata porcinus, Walton. Res Vet Sci. 1974;17:106–13.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Plowright W, Thompson GR, Nesser JA. African swine fever. In: Coetzer JAW, Thompson GR, Tustin RC, editors. Infectious diseases of livestock with special reference to Southern Africa. New York: Oxford University Press; 1994. p. 558–99.Google Scholar
  69. Quembo CJ, Jori F, Vosloo W, HEATH L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound Emerg Dis. 2017;65(2):1–12.  https://doi.org/10.1111/tbed.12700.CrossRefGoogle Scholar
  70. Rahimi P, Sohrabi A, Ashrafihelan J, Edalat R, Alamdar M, Masoudi M, Mastofi S, Azadmanesh K. Emergence of African swine fever virus, Northwestern Iran. Emerg Infect Dis. 2010;16:1946–8.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ravaomanana J, Michaud V, Jori F, Andriatsimahavandy A, Roger F, Albina E, Vial L. First detection of African swine fever virus in Ornithodoros porcinus in Madagascar and new insights into tick distribution and taxonomy. Parasit Vectors. 2010;3:115.  https://doi.org/10.1186/1756-3305-3-115. http://www.parasitesandvectors.com/content/3/1/115 CrossRefPubMedCentralPubMedGoogle Scholar
  72. Rodriguez JF, Vinuela E. Analysis of the complete nucleotide sequence of African swine fever virus. Virology. 1995;208:249–78.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Rojo G, GarcõÂa-Beato R, Vinuela E, Salas ML, Jose Salas JA. Replication of African swine fever virus DNA in infected cells. Virology. 1999;257:524–36.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Rousset D, Randriamparany T, Maharavo Rahantamalala CY, Randriamahefa N, Zeller H, Rakoto-Andrianarivelo M, Roger F. Introduction de la Peste Porcine Africaine à Madagascar, histoire et leçons d’une émergence. Arch Inst Pasteur Madagascar. 2001;67(1–2):31–3.PubMedPubMedCentralGoogle Scholar
  75. Salas ML, Kuznar J, Vinuela E. Polyadenylation, methylation and capping of the RNA synthesized in vitro by African swine fever virus. Virology. 1981;113:484–91.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Salas ML, Rey-Campos J, Almendral JM, Talavera A, Vinuela E. Transcription and translation maps of African swine fevervirus. Virology. 1986;152:228–40.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Sanchez-Botija C. Reservorious del virus de la peste porcina Africana. Bull Off Int Epiz. 1963;60:895–9.Google Scholar
  78. Sogo JM, Almendral JM, Talavera A, Vinuela E. Terminal and internal inverted repetitions in African swine fever virus DNA. Virology. 1984;133:271–5.PubMedCrossRefGoogle Scholar
  79. Takamatsu H, Martins C, Escribano JM, Alonso C, Dixon LK, Salas ML, Revilla Y. Asfariviridae. In: King AMQ, Adams MJ, Carsterns EB, Leikowitz EJ, editors. Virus taxonomy. Ninth report of the ICTV. Oxford: Elsevier; 2011. p. 153–62.Google Scholar
  80. Tignon M, Gallardo C, Iscaro C, Hutet E, Van der Stede Y, Kolbasov D, De Mia GM, Le Potier M-F, Bishop RP, Arias M, Koenen F. Development and inter-laboratory validation study of an improved new real-time PCR assay with internal control for detection and laboratory diagnosis of African swine fever virus. J Virol Methods. 2011;178:161–70.PubMedCrossRefGoogle Scholar
  81. Vandeputte J, Chappuis G. Classical swine fever: the European experience and a guide for infected areas. Rev Sci Tech. 1999;18:638–47.PubMedCrossRefGoogle Scholar
  82. Vinuela E. African swine fever virus. Curr Top Microbiol Immunol. 1985;116:151–79.PubMedGoogle Scholar
  83. Wardley RC. African swine fever virus. Arch Virol. 1983;76:73–90.PubMedCrossRefGoogle Scholar
  84. Wengler G. Family flaviviridae. In: Francki RIB, Fauquet CM, Knudson DL, Brown F, editors. Classification and nomenclature of viruses. Fifth report of the International Committee on Taxonomy of Viruses. Berlin: Springer; 1991. p. 223.Google Scholar
  85. Wesley BD, Tuthill AE. Genome relatedness among African swine fever virus field isolates by restriction endonucleases analysis. Prev Vet Med. 1984;2:53–62.CrossRefGoogle Scholar
  86. Wilkinson PJ. African swine fever. In: Manual of standards for diagnostic test and vaccines. 4th ed. Paris: Office International des Epizooties; 2000. p. 189–98.Google Scholar
  87. Wittek R, Moss B. Tandem repeats within the inverted terminal repetition of vaccinia virus DNA. Cell. 1980;21:277–84.PubMedCrossRefGoogle Scholar
  88. Yanez FJ, Rodriguez JM, Nogal ML, Yuste L, Enriquez C, Rodriguez HE, Vinuela E. Analysis of the complete nucleotide sequence of African swine fever virus. Virology. 1995;208:249–78.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Emmanuel Couacy-Hymann
    • 1
  1. 1. LANADA/Central Laboratory for Animal DiseasesBingervilleIvory Coast

Personalised recommendations