Advertisement

Corneal Angiogenesis and Lymphangiogenesis

  • Felix Bock
  • Claus CursiefenEmail author
Chapter

Abstract

Due to several corneal diseases [1] (Table 21.1) and after surgery [2], blood and lymphatic vessels can grow into the normally avascular cornea. This neovascularization starts for both blood and lymphatic vessels at the limbal vascular plexus. Blood vessels impair significantly the visual function of the cornea due to opacification by blood vessels themselves but also by secondary effects such as oedema and lipid keratopathy in the corneal stroma. Lymphangiogenesis in contrast is visually not disturbing, but a key risk factor for immune reactions after corneal transplantation [3]. Hem- and lymphangiogenesis do not only occur as a consequence of diseases but can also be the reason for infectious or inflammatory corneal diseases. Both hem- and lymphangiogenesis are an essential part of the worldwide most frequent reasons for corneal blindness (trachoma) [4] and the most frequent reason for infectious blindness – herpetic keratitis – in the western civilization [5].

Keywords

Angiogenesis Lymphangiogenesis Corneal transplantation Corneal immune privilege Corneal angiogenic privilege Neovascularization Regression Crosslinking Fine needle diathermy Vascular endothelial growth factor 

Notes

Acknowledgment

We appreciate support from DFG Research Unit FOR2240 (www.for2240.de), EU Arrest Blindness (www.arrestblindness.eu) and EU Cost Action Biocornea (www.biocornea.eu).

References

  1. 1.
    Cursiefen C, Kuchle M, Naumann GO. Angiogenesis in corneal diseases: histopathologic evaluation of 254 human corneal buttons with neovascularization. Cornea. 1998;17:611–3.CrossRefGoogle Scholar
  2. 2.
    Cursiefen C, Martus P, Nguyen NX, Langenbucher A, Seitz B, Kuchle M. Corneal neovascularization after nonmechanical versus mechanical corneal trephination for non-high-risk keratoplasty. Cornea. 2002;21:648–52.CrossRefGoogle Scholar
  3. 3.
    Hou Y, Le VNH, Clahsen T, Schneider AC, Bock F, Cursiefen C. Photodynamic therapy leads to time-dependent regression of pathologic corneal (lymph) angiogenesis and promotes high-risk corneal allograft survival. Invest Ophthalmol Vis Sci. 2017;58:5862–9.  https://doi.org/10.1167/iovs.17-22904.CrossRefPubMedGoogle Scholar
  4. 4.
    Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. Bull World Health Organ. 2001;79:214–21.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Pepose JS, Leib DA, Stuart PM, Easty EL. Herpes simplex virus disease: anterior segment of the eye. St Louis: Mosby-Year-Book; 1996.Google Scholar
  6. 6.
    Bock F, Maruyama K, Regenfuss B, Hos D, Steven P, Heindl LM, Cursiefen C. Novel anti(lymph)angiogenic treatment strategies for corneal and ocular surface diseases. Prog Retin Eye Res. 2013;34:89–124.  https://doi.org/10.1016/j.preteyeres.2013.01.001.CrossRefPubMedGoogle Scholar
  7. 7.
    Chang JH, Gabison EE, Kato T, Azar DT. Corneal neovascularization. Curr Opin Ophthalmol. 2001;12:242–9.CrossRefGoogle Scholar
  8. 8.
    Cursiefen C, Masli S, Ng TF, Dana MR, Bornstein P, Lawler J, Streilein JW. Roles of thrombospondin-1 and -2 in regulating corneal and iris angiogenesis. Invest Ophthalmol Vis Sci. 2004;45:1117–24.CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Cursiefen C, Chen L, Saint-Geniez M, Hamrah P, Jin Y, Rashid S, Pytowski B, Persaud K, Wu Y, Streilein JW, Dana R. Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision. Proc Natl Acad Sci U S A. 2006;103:11405–10.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Singh N, Tiem M, Watkins R, Cho YK, Wang Y, Olsen T, Uehara H, Mamalis C, Luo L, Oakey Z, Ambati BK. Soluble vascular endothelial growth factor receptor 3 is essential for corneal alymphaticity. Blood. 2013;121:4242–9.  https://doi.org/10.1182/blood-2012-08-453043.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Albuquerque RJ, Hayashi T, Cho WG, Kleinman ME, Dridi S, Takeda A, Baffi JZ, Yamada K, Kaneko H, Green MG, Chappell J, Wilting J, Weich HA, Yamagami S, Amano S, Mizuki N, Alexander JS, Peterson ML, Brekken RA, Hirashima M, Capoor S, Usui T, Ambati BK, Ambati J. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med. 2009;15:1023–30.  https://doi.org/10.1038/nm.2018.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bock F, Onderka J, Braun G, Schneider AC, Hos D, Bi Y, Bachmann BO, Cursiefen C. Identification of novel endogenous anti(lymph)angiogenic factors in the aqueous humor. Invest Ophthalmol Vis Sci. 2016;57:6554–60.  https://doi.org/10.1167/iovs.15-18526.CrossRefPubMedGoogle Scholar
  13. 13.
    Cursiefen C, Rummelt C, Kuchle M. Immunohistochemical localization of vascular endothelial growth factor, transforming growth factor alpha, and transforming growth factor beta1 in human corneas with neovascularization. Cornea. 2000;19:526–33.CrossRefGoogle Scholar
  14. 14.
    Mastyugin V, Mosaed S, Bonazzi A, Dunn MW, Schwartzman ML. Corneal epithelial VEGF and cytochrome P450 4B1 expression in a rabbit model of closed eye contact lens wear. Curr Eye Res. 2001;23:1–10.CrossRefGoogle Scholar
  15. 15.
    Zheng M, Deshpande S, Lee S, Ferrara N, Rouse BT. Contribution of vascular endothelial growth factor in the neovascularization process during the pathogenesis of herpetic stromal keratitis. J Virol. 2001;75:9828–35.CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Zheng M, Schwarz MA, Lee S, Kumaraguru U, Rouse BT. Control of stromal keratitis by inhibition of neovascularization. Am J Pathol. 2001;159:1021–9.CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Zhu SN, Dana MR. Expression of cell adhesion molecules on limbal and neovascular endothelium in corneal inflammatory neovascularization. Invest Ophthalmol Vis Sci. 1999;40:1427–34.PubMedGoogle Scholar
  18. 18.
    Cursiefen C, Chen L, Dana MR, Streilein JW. Corneal lymphangiogenesis: evidence, mechanisms, and implications for corneal transplant immunology. Cornea. 2003;22:273–81.CrossRefGoogle Scholar
  19. 19.
    Cursiefen C, Schlotzer-Schrehardt U, Kuchle M, Sorokin L, Breiteneder-Geleff S, Alitalo K, Jackson D. Lymphatic vessels in vascularized human corneas: immunohistochemical investigation using LYVE-1 and podoplanin. Invest Ophthalmol Vis Sci. 2002;43:2127–35.Google Scholar
  20. 20.
    Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, D’Amore PA, Dana MR, Wiegand SJ, Streilein JW. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest. 2004;113:1040–50.  https://doi.org/10.1172/JCI20465.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest. 1999;103:159–65.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Cursiefen C, Hofmann-Rummelt C, Kuchle M, Schlotzer-Schrehardt U. Pericyte recruitment in human corneal angiogenesis: an ultrastructural study with clinicopathological correlation. Br J Ophthalmol. 2003;87:101–6.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Le VNH, Schneider AC, Scholz R, Bock F, Cursiefen C. Fine needle-diathermy regresses pathological corneal (lymph)angiogenesis and promotes high-risk corneal transplant survival. Sci Rep. 2018;8:5707.  https://doi.org/10.1038/s41598-018-24037-3.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hou Y, Le VNH, Toth G, Siebelmann S, Horstmann J, Gabriel T, Bock F, Cursiefen C. UV light crosslinking regresses mature corneal blood and lymphatic vessels and promotes subsequent high-risk corneal transplant survival. Am J Transplant. 2018;18:2873–84.  https://doi.org/10.1111/ajt.14874.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Goyal S, Chauhan SK, El Annan J, Nallasamy N, Zhang Q, Dana R. Evidence of corneal lymphangiogenesis in dry eye disease: a potential link to adaptive immunity? Arch Ophthalmol. 2010;128:819–24.  https://doi.org/10.1001/archophthalmol.2010.124.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hos D, Bukowiecki A, Horstmann J, Bock F, Bucher F, Heindl LM, Siebelmann S, Steven P, Dana R, Eming SA, Cursiefen C. Transient ingrowth of lymphatic vessels into the physiologically avascular cornea regulates corneal edema and transparency. Sci Rep. 2017;7:7227.  https://doi.org/10.1038/s41598-017-07806-4.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Huang M, Wang B, Wan P, Liang X, Wang X, Liu Y, Zhou Q, Wang Z. Roles of limbal microvascular net and limbal stroma in regulating maintenance of limbal epithelial stem cells. Cell Tissue Res. 2015;359:547–63.  https://doi.org/10.1007/s00441-014-2032-4.CrossRefPubMedGoogle Scholar
  28. 28.
    Notara M, Alatza A, Gilfillan J, Harris AR, Levis HJ, Schrader S, Vernon A, Daniels JT. In sickness and in health: corneal epithelial stem cell biology, pathology and therapy. Exp Eye Res. 2010;90:188–95.  https://doi.org/10.1016/j.exer.2009.09.023.CrossRefPubMedGoogle Scholar
  29. 29.
    Notara M, Refaian N, Braun G, Steven P, Bock F, Cursiefen C. Short-term uvb-irradiation leads to putative limbal stem cell damage and niche cell-mediated upregulation of macrophage recruiting cytokines. Stem Cell Res. 2015;15:643–54.  https://doi.org/10.1016/j.scr.2015.10.008.CrossRefPubMedGoogle Scholar
  30. 30.
    Dietrich T, Bock F, Yuen D, Hos D, Bachmann BO, Zahn G, Wiegand S, Chen L, Cursiefen C. Cutting edge: lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation. J Immunol. 2010;184:535–9.  https://doi.org/10.4049/jimmunol.0903180.CrossRefPubMedGoogle Scholar
  31. 31.
    Reuer T, Schneider AC, Cakir B, Buhler AD, Walz JM, Lapp T, Lange C, Agostini H, Schlunck G, Cursiefen C, Reinhard T, Bock F, Stahl A. Semaphorin 3F modulates corneal lymphangiogenesis and promotes corneal graft survival. Invest Ophthalmol Vis Sci. 2018;59:5277–84.  https://doi.org/10.1167/iovs.18-24287.CrossRefPubMedGoogle Scholar
  32. 32.
    Maguire MG, Stark WJ, Gottsch JD, Stulting RD, Sugar A, Fink NE, Schwartz A. Risk factors for corneal graft failure and rejection in the collaborative corneal transplantation studies. Collaborative Corneal Transplantation Studies Research Group. Ophthalmology. 1994;101:1536–47.CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kuchle M, Cursiefen C, Nguyen NX, Langenbucher A, Seitz B, Wenkel H, Martus P, Naumann GO. Risk factors for corneal allograft rejection: intermediate results of a prospective normal-risk keratoplasty study. Graefes Arch Clin Exp Ophthalmol. 2002;240:580–4.CrossRefGoogle Scholar
  34. 34.
    Schroedl F, Kaser-Eichberger A, Schlereth SL, Bock F, Regenfuss B, Reitsamer HA, Lutty GA, Maruyama K, Chen L, Lutjen-Drecoll E, Dana R, Kerjaschki D, Alitalo K, De Stefano ME, Junghans BM, Heindl LM, Cursiefen C. Consensus statement on the immunohistochemical detection of ocular lymphatic vessels. Invest Ophthalmol Vis Sci. 2014;55:6440–2.  https://doi.org/10.1167/iovs.14-15638.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Liu Y, Hamrah P, Zhang Q, Taylor AW, Dana MR. Draining lymph nodes of corneal transplant hosts exhibit evidence for donor major histocompatibility complex (MHC) class II-positive dendritic cells derived from MHC class II-negative grafts. J Exp Med. 2002;195:259–68.CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Yamagami S, Dana MR. The critical role of lymph nodes in corneal alloimmunization and graft rejection. Invest Ophthalmol Vis Sci. 2001;42:1293–8.PubMedGoogle Scholar
  37. 37.
    Dana MR, Schaumberg DA, Kowal VO, Goren MB, Rapuano CJ, Laibson PR, Cohen EJ. Corneal neovascularization after penetrating keratoplasty. Cornea. 1995;14:604–9.PubMedGoogle Scholar
  38. 38.
    Chan WK, Weissman BA. Corneal pannus associated with contact lens wear. Am J Ophthalmol. 1996;121:540–6.CrossRefGoogle Scholar
  39. 39.
    Donnenfeld ED, Ingraham H, Perry HD, Imundo M, Goldberg LP. Contact lens-related deep stromal intracorneal hemorrhage. Ophthalmology. 1991;98:1793–6.CrossRefGoogle Scholar
  40. 40.
    Bock F, Matthaei M, Reinhard T, Bohringer D, Christoph J, Ganslandt T, Cursiefen C. High-dose subconjunctival cyclosporine a implants do not affect corneal neovascularization after high-risk keratoplasty. Ophthalmology. 2014;121:1677–82.  https://doi.org/10.1016/j.ophtha.2014.03.016.CrossRefPubMedGoogle Scholar
  41. 41.
    Becker B. The side effects of corticosteroids. Investig Ophthalmol. 1964;3:492–7.Google Scholar
  42. 42.
    Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.CrossRefGoogle Scholar
  43. 43.
    Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg. 1972;175:409–16.CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Bock F, Konig Y, Kruse F, Baier M, Cursiefen C. Bevacizumab (Avastin) eye drops inhibit corneal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2008;246:281–4.CrossRefGoogle Scholar
  45. 45.
    Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis. Cancer Res. 2005;65:3967–79.CrossRefGoogle Scholar
  46. 46.
    Lafleur MA, Handsley MM, Edwards DR. Metalloproteinases and their inhibitors in angiogenesis. Expert Rev Mol Med. 2003;2003:1–39.CrossRefGoogle Scholar
  47. 47.
    Cursiefen C, Cao J, Chen L, Liu Y, Maruyama K, Jackson D, Kruse FE, Wiegand SJ, Dana MR, Streilein JW. Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Invest Ophthalmol Vis Sci. 2004;45:2666–73.CrossRefGoogle Scholar
  48. 48.
    Cursiefen C, Ikeda S, Nishina PM, Smith RS, Ikeda A, Jackson D, Mo JS, Chen L, Dana MR, Pytowski B, Kruse FE, Streilein JW. Spontaneous corneal hem- and lymphangiogenesis in mice with destrin-mutation depend on VEGFR3 signaling. Am J Pathol. 2005;166:1367–77.CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L, Winkler M, Ferrara N. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 1997;57:4593–9.PubMedGoogle Scholar
  50. 50.
    Dastjerdi MH, Al-Arfaj KM, Nallasamy N, Hamrah P, Jurkunas UV, Pineda R 2nd, Pavan-Langston D, Dana R. Topical bevacizumab in the treatment of corneal neovascularization: results of a prospective, open-label, noncomparative study. Arch Ophthalmol. 2009;127:381–9.  https://doi.org/10.1001/archophthalmol.2009.18.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bock F, Onderka J, Dietrich T, Bachmann B, Kruse FE, Paschke M, Zahn G, Cursiefen C. Bevacizumab as a potent inhibitor of inflammatory corneal angiogenesis and lymphangiogenesis. Invest Ophthalmol Vis Sci. 2007;48:2545–52.  https://doi.org/10.1167/iovs.06-0570.CrossRefPubMedGoogle Scholar
  52. 52.
    Ferrara N, Chen H, Davis-Smyth T, Gerber HP, Nguyen TN, Peers D, Chisholm V, Hillan KJ, Schwall RH. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med. 1998;4:336–40.CrossRefGoogle Scholar
  53. 53.
    Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5:623–8.CrossRefGoogle Scholar
  54. 54.
    Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, Ioffe E, Huang T, Radziejewski C, Bailey K, Fandl JP, Daly T, Wiegand SJ, Yancopoulos GD, Rudge JS. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A. 2002;99:11393–8.CrossRefPubMedCentralGoogle Scholar
  55. 55.
    Bachmann BO, Bock F, Wiegand SJ, Maruyama K, Dana MR, Kruse FE, Luetjen-Drecoll E, Cursiefen C. Promotion of graft survival by vascular endothelial growth factor a neutralization after high-risk corneal transplantation. Arch Ophthalmol. 2008;126:71–7.  https://doi.org/10.1001/archopht.126.1.71.CrossRefPubMedGoogle Scholar
  56. 56.
    Bachmann BO, Luetjen-Drecoll E, Bock F, Wiegand SJ, Hos D, Dana R, Kruse FE, Cursiefen C. Transient postoperative vascular endothelial growth factor (VEGF)-neutralisation improves graft survival in corneas with partly regressed inflammatory neovascularisation. Br J Ophthalmol. 2009;93:1075–80.  https://doi.org/10.1136/bjo.2008.145128.CrossRefPubMedGoogle Scholar
  57. 57.
    Salabarria AC, Braun G, Heykants M, Koch M, Reuten R, Mahabir E, Cursiefen C, Bock F. Local VEGF-A blockade modulates the microenvironment of the corneal graft bed. Am J Transplant. 2019;  https://doi.org/10.1111/ajt.15331.CrossRefGoogle Scholar
  58. 58.
    Cursiefen C, Bock F, Horn FK, Kruse FE, Seitz B, Borderie V, Fruh B, Thiel MA, Wilhelm F, Geudelin B, Descohand I, Steuhl KP, Hahn A, Meller D. GS-101 antisense oligonucleotide eye drops inhibit corneal neovascularization: interim results of a randomized phase II trial. Ophthalmology. 2009;116:1630–7.  https://doi.org/10.1016/j.ophtha.2009.04.016.CrossRefPubMedGoogle Scholar
  59. 59.
    Koenig Y, Bock F, Kruse FE, Stock K, Cursiefen C. Angioregressive pretreatment of mature corneal blood vessels before keratoplasty: fine-needle vessel coagulation combined with anti-VEGFs. Cornea. 2012;31:887–92.  https://doi.org/10.1097/ICO.0b013e31823f8f7a.CrossRefPubMedGoogle Scholar
  60. 60.
    Brooks BJ, Ambati BK, Marcus DM, Ratanasit A. Photodynamic therapy for corneal neovascularisation and lipid degeneration. Br J Ophthalmol. 2004;88:840.CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Morisada T, Oike Y, Yamada Y, Urano T, Akao M, Kubota Y, Maekawa H, Kimura Y, Ohmura M, Miyamoto T, Nozawa S, Koh GY, Alitalo K, Suda T. Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation. Blood. 2005;105:4649–56.  https://doi.org/10.1182/blood-2004-08-3382.CrossRefPubMedGoogle Scholar
  62. 62.
    Song SH, Kim KL, Lee KA, Suh W. Tie1 regulates the Tie2 agonistic role of angiopoietin-2 in human lymphatic endothelial cells. Biochem Biophys Res Commun. 2012;419:281–6.  https://doi.org/10.1016/j.bbrc.2012.02.009.CrossRefPubMedGoogle Scholar
  63. 63.
    Tammela T, Saaristo A, Holopainen T, Yla-Herttuala S, Andersson LC, Virolainen S, Immonen I, Alitalo K. Photodynamic ablation of lymphatic vessels and intralymphatic cancer cells prevents metastasis. Sci Transl Med. 2011;3:69ra11.  https://doi.org/10.1126/scitranslmed.3001699.CrossRefPubMedGoogle Scholar
  64. 64.
    Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135:620–7.CrossRefGoogle Scholar
  65. 65.
    Kohlhaas M, Spoerl E, Speck A, Schilde T, Sandner D, Pillunat LE. A new treatment of keratectasia after LASIK by using collagen with riboflavin/UVA light cross-linking. Klin Monatsbl Augenheilkd. 2005;222:430–6.  https://doi.org/10.1055/s-2005-857950.CrossRefPubMedGoogle Scholar
  66. 66.
    Goodrich RP. The use of riboflavin for the inactivation of pathogens in blood products. Vox Sang. 2000;78(Suppl 2):211–5.PubMedGoogle Scholar
  67. 67.
    Tabibian D, Richoz O, Hafezi F. PACK-CXL: corneal cross-linking for treatment of infectious keratitis. J Ophthalmic Vis Res. 2015;10:77–80.  https://doi.org/10.4103/2008-322X.156122.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Le VNH, Hou Y, Horstmann J, Bock F, Cursiefen C. Novel method to detect corneal lymphatic vessels in vivo by intrastromal injection of fluorescein. Cornea. 2018;37:267–71.  https://doi.org/10.1097/ICO.0000000000001444.CrossRefPubMedGoogle Scholar
  69. 69.
    Horstmann J, Schulz-Hildebrandt H, Bock F, Siebelmann S, Lankenau E, Huttmann G, Steven P, Cursiefen C. Label-free in vivo imaging of corneal lymphatic vessels using microscopic optical coherence tomography. Invest Ophthalmol Vis Sci. 2017;58:5880–6.  https://doi.org/10.1167/iovs.17-22286.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Cologne, Department of OphthalmologyCologneGermany

Personalised recommendations