Perspectives in Keratoplasty

  • Kenneth R. Kenyon
  • Kathryn M. Hatch
  • Roberto Pineda


The past half century of progress in keratoplasty is reviewed with respect both to fundamental evolution of corneal transplantation from essentially uniform penetrating keratoplasty of the 1960s to the current variations on anterior and posterior lamellar keratoplasty themes. The adjunctive development of surgical instrumentation, eye banking, and tecniques of ocular surface rehabilitation, anterior segment reconstruction and cataract surgery are also interpolated with respect to their influences on keratoplasty itself. The future of bioengineered corneas and their cellular constituents is also introduced.


Cornea Corneal transplantation Keratoplasty Anterior segment reconstruction Limbal stem cell Amnion membrane Lamellar keratoplasty Endothelial keratoplasty Bioengineered cornea 


  1. 1.
    Kenyon KR, Maumenee AE. The histological and ultrastructural pathology of congenital hereditary corneal dystrophy: a case report. Investig Ophthalmol. 1968;7:475–500.Google Scholar
  2. 2.
    Kenyon KR, Foster CS. Thermal denaturation of donor cornea: an unusual complication of penetrating keratoplasty. Ophthalmic Surg. 1978;9(5):47–51.PubMedGoogle Scholar
  3. 3.
    Schein OD, Kenyon KR, Steinert RF, et al. A randomized trial of intraocular lens fixation techniques with penetrating keratoplasty. Ophthalmol. 1993;100:1437–43.CrossRefGoogle Scholar
  4. 4.
    Cohen EJ, Kenyon KR, Dohlman CH. Iridoplasty for prevention of post keratoplasty angle closure and glaucoma. Ophthalmic Surg. 1982;13:994–6.PubMedGoogle Scholar
  5. 5.
    Kenyon KR, Starck T, Hersh PS. Penetrating keratoplasty and anterior segment reconstruction for severe ocular trauma. Ophthalmology. 1992;99:396–402.CrossRefPubMedGoogle Scholar
  6. 6.
    Kenyon KR, Tseng SCG. Limbal autograft transplantation for ocular surface disorders. Ophthalmology. 1989;96:709–23.CrossRefGoogle Scholar
  7. 7.
    Pellegrini G, Traverse C, Franzi AT, et al. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet. 1997;349:90–993.CrossRefGoogle Scholar
  8. 8.
    Tseng SCG. Amniotic membrane transplantation. Ann Ophthalmol. 2006;38:271–83.CrossRefGoogle Scholar
  9. 9.
    Kenyon KR. Amniotic membrane transplantation combined with keratoplasty in neurotrophic corneas. In: John T, editor. Surgical techniques in anterior and posterior lamellar corneal surgery. New Delhi: Jaypee; 2006. p. 599–608.Google Scholar
  10. 10.
    Eye Bank Association of America, 2009 Eye Banking Statistical Report. (Last updated 2015 June 01). Available from:
  11. 11.
    Utine CA, Tzu JH, Akpek EK. Lamellar keratoplasty using gamma-irradiated corneal lenticules. Am J Ophthalmol. 2011;151:170–4.CrossRefGoogle Scholar
  12. 12.
    Daoud YJ, Smith R, Smith T, et al. The intraoperative impression and postoperative outcomes of gamma-irradiated corneas in corneal and glaucoma patch surgery. Cornea. 2011;30:1387–91.CrossRefPubMedGoogle Scholar
  13. 13.
    Mashor RS, Rootman DB, Bahar I, et al. Outcomes of deep anterior lamellar keratoplasty versus Intralase enabled penetrating keratoplasty in keratoconus. Can J Ophthalmol. 2011;46:403–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Melles GR. Posterior lamellar keratoplasty: DLEK to DSEK to DMEK. Cornea. 2006;25:879–81.CrossRefPubMedGoogle Scholar
  15. 15.
    Melles GR, Ong TS, Verver B, et al. Descemet membrane endothelial keratoplasty (DMEK). Cornea. 2006;25:987–90.CrossRefGoogle Scholar
  16. 16.
    Price MO, Price FW. Endothelial keratoplasty - a review. Clin Exp Ophthalmol. 2010;38:128–40.CrossRefGoogle Scholar
  17. 17.
    Huang MJ, Kane S, Dhaliwal DK. Descemetorhexis without endothelial keratoplasty versus DMEK for treatment of Fuchs endothelial dystrophy. Cornea. 2018;37:1479–83.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Macsai MS, Shiloach M. Use of topical rho kinase inhibitors in the treatment of Fuchs dystrophy after Descemet stripping only. Cornea. 2019. (Epub ahead of print).Google Scholar
  19. 19.
    Godefrooik D, DeWit GA, al UCS t. Age-specific incidence and prevalence of keratoconus: a nationwide registration study. Am J Ophthalmol. 2017;175:169–72.CrossRefGoogle Scholar
  20. 20.
    Spadea L, Cantera E, Cortes M, et al. Cornea ectasia after myopic laser in situ keratomileusis: a long-term study. Clin Opthalmol. 2012;6:1801–13.Google Scholar
  21. 21.
    Wagner H, Barr JT, Zadnik K. Collaborative longitudinal evaluation of keratoconus (CLEK) study: methods and findings to date. Cont Lens Anterior Eye. 2007;207(30):223–32.CrossRefGoogle Scholar
  22. 22.
    Kılıç A, Kamburoglu G, Akıncı A. Riboflavin injection into the corneal channel for combined collagen crosslinking and intrastromal corneal ring segment implantation. J Cataract Refract Surg. 2012;38:878–83.CrossRefPubMedGoogle Scholar
  23. 23.
    Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66:97–103.CrossRefGoogle Scholar
  24. 24.
    O’Brart DP, Patel P, Lascaratos G, et al. Corneal crosslinking to halt progression of keratoconus and corneal ectasia: seven year follow-up. Am J Ophthalmol. 2015;215(160):1154–63.CrossRefGoogle Scholar
  25. 25.
    Nattis A, Donnenfeld ED, Rosenberg E. Visual and keratometric outcomes of keratoconus patients after sequential corneal crosslinking and topography-guided surface ablation: early United States experience. J Cataract Refract Surg. 2018 Aug;44(8):1003–11.CrossRefGoogle Scholar
  26. 26.
    Kissam R. Ceratoplastice in man. NY J Med CollatSci. 1844;2:281–2.Google Scholar
  27. 27.
    Zirm E. Eine erfolgreiche totale keratoplastik. Graefe Archiv für Ophthalmologie. 1906;64:580–95.CrossRefGoogle Scholar
  28. 28.
    Lee HI, Kim MK, Ko JH, et al. The characteristics of porcine cornea as a xenograft. J Korean OphthalmolSoc. 2006;47:2020–9.Google Scholar
  29. 29.
    Pan Z, Sun C, Jie Y, et al. WZS-pig is a potential donor alternaive in corneal xenotransplantation. Xenotransplantation. 2007;14:603–61.CrossRefGoogle Scholar
  30. 30.
    Lin XC, Hui YN, Wang YS, et al. Lamellar keratoplasty with a graft of lyophilized cellular porcine corneal stroma in the rabbit. Vet Ophthalmol. 2008;11:61–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang MC, Liu X, Jin DL, et al. Lamellar keratoplasty treatment of fungal corneal ulcers with acellular porcine corneal stroma. Am J Transplant. 2015;15:1068–75.CrossRefPubMedGoogle Scholar
  32. 32.
    Tai HC, Ezzelarab M, Hara H, et al. Progress in xenotransplantation following the introduction of gene knockout technology. Transpl Int. 2007;20:107–17.Google Scholar
  33. 33.
    Ghezzi CE, Rnjak-Kovacina J, Kaplan DL. l Corneal issue engineering: recent advances and future perspectives. Tissue Eng Part B Rev. 2015;21:278–87.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Matthyssen S, Van den Bogerd B, Dhubhghaill SN, et al. Cornea regeneration. A review of stromal replacements. Acta Biomater. 2018;69:31–41.CrossRefPubMedGoogle Scholar
  35. 35.
    Chen Z, you J, Liu X, et al. Biomaterials for corneal bioengineering. Biomed Mater. 2018;13:320–2.Google Scholar
  36. 36.
    Griffith M, Jackson WB, Lagali N, et al. Artificial corneas: a regenerative medicine approach. Eye. 2009;23:1985–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Isaacson A, Swioklo S, Connor CJ. 3D bioprinting of a corneal stroma equivalent. Exp Eye Res. 2018;173:188–93.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Amano S, Yamagami S, Mimura T, et al. Corneal stromal and endothelial cell precursors. Cornea. 2006;25:573–7.CrossRefGoogle Scholar
  39. 39.
    Du Y, Carlson EC, Funderburgh ML, et al. Stem cell therapy restores transparency to defective murine corneas. Stem Cells. 2009;20(27):1635–42.CrossRefGoogle Scholar
  40. 40.
    Burillon C, Huot L, Justin V, et al. Cultured autologous oral mucosal epithelial cell sheet (CAOMECS) transplantation for treatment of corneal limbal epithelial stem cell deficiency. Invest Ophthalmol Vis Sci. 2012;53:1325–31.CrossRefPubMedGoogle Scholar
  41. 41.
    Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.CrossRefGoogle Scholar
  42. 42.
    Lan Y, Kodati S, Lee HS, et al. Kinetics and function of mesenchymal stem cells in corneal injury. Invest Ophthalmol Vis Sci. 2012;53:3638–44.CrossRefGoogle Scholar
  43. 43.
    Arnalich-Montiel F, Pastor S. Blazquez-Martinez et al. adipose-derived stem cells are a source for cell therapy of the corneal stroma. Stem Cells. 2008;26:570–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Ludwig PE, Huff TJ, Zuniga JM. The potential role of bioengineering and three-dimensional printing in curing global corneal blindness. J Tissue Eng. 2018;9:2041731418769863.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kenneth R. Kenyon
    • 1
  • Kathryn M. Hatch
    • 2
  • Roberto Pineda
    • 3
  1. 1.Tufts University School of MedicineNew England Eye Center, Department of OphthalmologyBostonUSA
  2. 2.Massachusetts Eye and Ear WalthamDepartment of Cornea and Refractive SurgeryWalthamUSA
  3. 3.Harvard Medical School, Massachusetts Eye & Ear InfirmaryDepartment of OphthalmologyBostonUSA

Personalised recommendations