Treatment of Chemical Burn to the Eye: A Changing Picture

  • Claes H. DohlmanEmail author
  • Marie-Claude Robert
  • Eleftherios I. Paschalis


Purpose: To propose a modified treatment paradigm for chemical burns to the eye – in the acute and chronic phases – in particular aiming at preventing post-burn glaucoma.

Methods: Recent laboratory and clinical data on the biology and treatment of severe chemical burns have been analyzed and organized for the cornea clinician.

Results: Corneal blindness from chemical burns can now be successfully treated with a keratoprosthesis – in immediate and intermediate terms. Long-term outcomes, however, are frequently hampered by severe glaucoma. New experimental data suggest that within hours or days after the chemical exposure, inflammatory cytokines such as TNF-α are generated in the anterior segment and diffuse rapidly posteriorly. There they can cause severe damage to the retinal ganglion cells – thus likely being a cause of glaucoma in the long term. Treatment with anti TNF-α antibody or corticosteroids within hours post-accident is markedly neuroprotective in animal models.

Conclusion: In addition to standard emergency treatment (lavage, etc.), corticosteroids (triamcinolone) should be injected sub Tenon as promptly as possible after the accident. Later, after tuberculosis clearance, inflammatory cytokine inhibitors are likely indicated until inflammation has subsided. Prophylactic IOP lowering medication (carbonic anhydrate inhibitors) is recommended, long-term. Keratoprosthesis implantation may finally be indicated in a quiet stage.


Chemical eye burn Corneal ulceration Glaucoma Inflammatory cytokines Infliximab Keratoprosthesis 


Author Disclosures

Supported by the Boston Keratoprosthesis Research Fund, Massachusetts Eye and Ear, Boston, MA 02114.

The authors are, or have been, full-time employed by the Massachusetts Eye and Ear, the manufacturer of the Boston Keratoprosthesis.


  1. 1.
    Hughes WF Jr. Alkali injuries of the eye. Review of the literature and summary of present knowledge. Arch Ophthalmol. 1946;35:423–49.CrossRefGoogle Scholar
  2. 2.
    Wagoner MD. Chemical injuries of the eye: current concepts in pathophysiology and therapy. Surv Ophthalmol. 1997;41:275–313.CrossRefPubMedGoogle Scholar
  3. 3.
    Pfister RR, Pfister DR. Alkali injuries of the eye. In: Krachmer JH, Mannis MJ, Holland EJ, editors. Cornea, vol. I. 3rd ed: Elsevier; 2011. p. 1193–202.Google Scholar
  4. 4.
    Pfister DA, Pfister RR. Acid injuries of the eye. In: Krachmer JH, Mannis MJ, Holland EJ, editors. Cornea, vol. I. 3rd ed: Elsevier; 2011. p. 1187–92.Google Scholar
  5. 5.
    Dohlman CH, Cade F, Regatieri CV, Zhou C, Lei F, Crnej A, Harissi-Dagher M, Robert MC, Papaliodis GN, Chen D, Aquavella JV, Akpek EK, Aldave AJ, Sippel KC, DʼAmico DJ, Dohlman JG, Fagerholm P, Wang L, Shen LQ, González-Andrades M, Chodosh J, Kenyon KR, Foster CS, Pineda R, Melki S, Colby KA, Ciolino JB, Vavvas DG, Kinoshita S, Dana R, Paschalis EI. Chemical burns of the eye. The role of retinal injury and new therapeutic possibilities. Cornea. 2018;37:248–51.CrossRefGoogle Scholar
  6. 6.
    Gasset AR, Kaufman HE. Epikeratoprosthesis: replacement of superficial cornea by methylmethacrylate. Am J Ophthalmol. 1968;66:641.CrossRefPubMedGoogle Scholar
  7. 7.
    Dohlman CH, Slansky HH, Laibson PR, Gnȁdinger MC, Rose J. Artificial corneal epithelium in acute alkali burns. Ann Ophthalmol. 1969;1:357–61.Google Scholar
  8. 8.
    Kenyon KR, Berman M, Rose J, Gage J. Prevention of stromal ulceration in the alkali burned rabbit cornea by glued-on contact lens. Evidence for the role of polymorphonuclear leukocytes in collagen degradation. Invest Ophthalmol Vis Sci. 1979;18:570–81.PubMedGoogle Scholar
  9. 9.
    Pfister R, Haddox J. A neutrophil chemoattractant is released from cellular and extracellular components of the alkali-degraded cornea and blood. Invest Ophthalmol Vis Sci. 1996;37:230–7.PubMedGoogle Scholar
  10. 10.
    Sotozono C, He J, Matsumoto Y, Kita M, Imanishi J, Kinoshita S. Cytokine expression in the alkali-burned cornea. Curr Eye Res. 1997;16:670–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Fini ME, Cook JR, Mohan R. Proteolytic mechanisms in corneal ulceration and repair. Arch Dermatol Res. 1998;290:S12–23.CrossRefPubMedGoogle Scholar
  12. 12.
    Robert M-C, Dohlman CH. A review of corneal melting after Boston Keratoprosthesis. Semin Ophthalmol. 2014;29:349–57.CrossRefPubMedGoogle Scholar
  13. 13.
    Choi H, Phillips C, Oh JY, Stock EM, Kim DK, Won JK, Fulcher S. Comprehensive modeling of corneal alkali injury in the rat eye. Curr Eye Res. 2017;42:1348–57.CrossRefPubMedGoogle Scholar
  14. 14.
    Zauberman H, Refojo MF. Keratoplasty with glued on lenses for alkali burns. Arch Ophthalmol. 1973;89:46–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Fogle JA, Kenyon KR, Foster CS. Tissue adhesive arrests stromal melting in the human cornea. Am J Ophthalmol. 1980;89:795–802.CrossRefPubMedGoogle Scholar
  16. 16.
    Gross J, Lapiere CM. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Nat Acad Sci. 1962;48:1014.CrossRefPubMedGoogle Scholar
  17. 17.
    Slansky H, Gnädinger MC, Itoi M, Dohlman CH. Collagenase in corneal ulceration. Arch Ophthalmol. 1969;82:108–11.CrossRefGoogle Scholar
  18. 18.
    Brown SI, Weller CA, Wasserman HE. Collagenolytic activity of alkali-burned corneas. Arch Ophthalmol. 1969;81:370.CrossRefPubMedGoogle Scholar
  19. 19.
    Newsome N, Gross J. Prevention by medroxyprogesterone of perforation in the alkali burned rabbit cornea. Invest Ophthalmol Vis Sci. 1977;16:21–31.PubMedGoogle Scholar
  20. 20.
    Brown SI, Akiya S, Weller CA. Prevention of the ulcers of the alkali-burned cornea: preliminary studies with collagenase inhibitors. Arch Ophthalmol. 1969;82:95–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Slansky H, Berman M, Dohlman CH, Rose J. Cysteine and acetylcysteine in the prevention of corneal ulcerations. Ann Ophthalmol. 1970;2:488–91.Google Scholar
  22. 22.
    Slansky HH, Dohlman CH, Berman MB. Prevention of corneal ulcers. Trans Amer Acad Ophthalmol Otolaryngol. 1971;75:1208–11.Google Scholar
  23. 23.
    Seedor JA, Perry HD, McNamara TE, Golub LM, Buxton DF, Guthrie DS. Systemic tetracycline treatment of alkali-induced corneal ulceration in rabbits. Arch Ophthalmol. 1987;105:268–71.CrossRefPubMedGoogle Scholar
  24. 24.
    Perry HD, Hodes LW, Seedor JA, Donnenfeld ED, McNamara TF, Golub LM. Effect of doxycycline hyclate on corneal epithelial wound healing in rabbit alkali-burn model: preliminary observations. Cornea. 1993;12:379–82.CrossRefPubMedGoogle Scholar
  25. 25.
    Yamada J, Dana M, Sotozono C, Kinoshita S. Local suppression of IL-1 by receptor antagonist in the rat model of corneal injury. Exp Eye Res. 2003;76:161–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Sakimoto T, Sugaya S, Ishimori A, Sawa M. Anti-inflammatory effect of IL-6 receptor blockade in corneal alkali burn. Exp Eye Res. 2012;97:98–104.CrossRefPubMedGoogle Scholar
  27. 27.
    Sari ES, Yazici A, Aksit H, Yay A, Sahin G, Yildiz O, Ermis SS, Seyrek K, Yalcin B. Inhibitory effect of sub-conjunctival tocilizumab on alkali burn induced corneal neovascularization in rats. Curr Eye Res. 2015;40:48–55.CrossRefPubMedGoogle Scholar
  28. 28.
    Ferrari G, Bignami F, Giacomini C, Franchini S, Rama P. Safety and efficacy of topical infliximab in a mouse model of ocular surface scarring. Invest Ophthalmol Vis Sci. 2013;5:1680–8.CrossRefGoogle Scholar
  29. 29.
    Cade F, Paschalis E, Regatieri C, Vavvas D, Dana R, Dohlman CH. Alkali burn to the eye: protection using TNF-a inhibition. Cornea. 2014;33:382–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Črnej A, Omoto M, Dohlman TH, Gonzalez-Andrades M, Paschalis EI, Cruzat A, Khanh Vu TH, Doorenbos M, Chen DF, Dohlman CH, Dana R. Effect of penetrating keratoplasty and keratoprosthesis implantation on the posterior segment of the eye. Invest Ophthalmol Vis Sci. 2016;57:1643–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Paschalis EI, Zhou C, Lei F, Scott N, Kapoulea V, Robert MC, Vavvas D, Dana R, Chodosh J, Dohlman CH. Mechanism of retinal damage following ocular alkali burns. Am J Pathol. 2017;187:1327–42.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhou C, Robert M, Kapoulea V, Lei F, Stagner AM, Jakobiec FA, Dohlman CH, Paschalis EI. Sustained subconjunctival delivery of infliximab protects the cornea and retina following alkali burn to the eye. Invest Ophthalmol Vis Sci. 2017;58:96–105.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Den S, Sotozono C, Kinoshita S, Ikeda T. Efficacy of early systemic betamethasone or cyclosporin A after corneal alkali injury via inflammatory cytokine reduction. Acta Ophthalmol. 2004;82:195–9.CrossRefGoogle Scholar
  34. 34.
    Herretes S, Suwan-Apichon O, Pirouzmanesh A, Reyes JMG, Broman AT, Cano M, Gehlbach PL, Gurewitsch ED, Duh EJ, Behrens A. Use of topical human amniotic fluid in the treatment of acute ocular alkali injuries in mice. Am J Ophthalmol. 2006;142:271–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Yao L, Li Z, Su W, Li Y, Lin M, Zhang W, Liu Y, Wan Q, Liang D. Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn. PLoS One. 2012;7(2):e30842.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Holan V, Trosan P, Cejka C, Javorkova E, Zajicova A, Hermankova B, Chudickova M, Cejkova J. A comparison study of the therapeutic potential of mesenchymal stem cells and limbal epithelial stem cells for ocular surface reconstruction. Stem Cells Trans Med. 2015;4:1052–63.CrossRefGoogle Scholar
  37. 37.
    Hertsenberg AJ, Shojaati G, Funderburgh ML, Mann MM, Du Y, Funderburgh JL. Corneal stroma stem cells reduce corneal scarring by mediating neutrophil infiltration after wounding. PLoS One. 2017;12:e0171712.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Netland PA, Terada H, Dohlman CH. Glaucoma associated with keratoprosthesis. Ophthalmology. 1998;105:751–7.CrossRefGoogle Scholar
  39. 39.
    Cade F, Grosskreutz CL, Tauber A, Dohlman CH. Glaucoma in eyes with severe chemical burn, before and after keratoprosthesis. Cornea. 2011;30:1322–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Crnej A, Paschalis EI, Salvador-Culla B, Tauber A, Drnovsek-Olup B, Shen LQ, Dohlman CH. Glaucoma progression and timing of glaucoma surgery in patients with Boston keratoprosthesis. Cornea. 2014;33:349–54.CrossRefPubMedGoogle Scholar
  41. 41.
    Paschalis EI, Lei F, Zhou C, Kapoulea V, Dana R, Chodosh J, Vavvas DG, Dohlman CH. Permanent neuroglial remodeling of the retina following infiltration of CSF1R-inhibition resistant peripheral monocytes: Proc Nat Acad Sci. (in press).Google Scholar
  42. 42.
    Nakazawa T, Nakazawa C, Matsubara A, Noda K, Hisatomi T, She H, Michaud N, Hafezi-Moghadam A, Miller JW, Benowitz LI. Tumor necrosis factor-α mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci. 2006;26:12633–41.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Roh M, Zang Y, Murakami Y, Thanos A, Lee SC, Vavvas DG, Benowitz LI, Miller JW. Etanercept, a widely used inhibitor of tumor necrosis factor-α (TNF-α), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS One. 2012;7:e40065.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sano Y, Osawa H, Sotozono C, Kinoshita S. Cytokine expression during orthotopic corneal allograft rejection in mice. Invest Ophthalmol Vis Sci. 1998;39:1953–7.PubMedGoogle Scholar
  45. 45.
    Amouzegar A, Chauhan SK, Dana R. Alloimmunity and tolerance in corneal transplantation. J Immunol. 2016;196:3983–91.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Crnej A, Omoto M, Dohlman TH, Graney JM, Dohlman CH, Drnovsek-Olup B, Dana R. A novel murine model for keratoprosthesis. Invest Ophthalmol Vis Sci. 2014;55:3681–5.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Paterson CA, Pfister RR, Levinson RA. Aqueous humor pH changes after experimental alkali burns. Am J Ophthalmol. 1975;79:414–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Schrage NF, Langefeld S, Zschocke J, Kuckelkorn R, Redbrake C, Reim M. Eye burns: an emergency and continuing problem. Burns. 2000;26:689–99.CrossRefPubMedGoogle Scholar
  49. 49.
    Rihawi S, Frentz M, Schrage NF. Emergency treatment of eye burns: which rinsing solution should we choose? Graefe’s. Arch Clin Exp Ophthlmol. 2006;244:845–54.CrossRefGoogle Scholar
  50. 50.
    Donshik PC, Berman MB, Dohlman CH, Gage J, Rose J. Effect of topical corticosteroids on ulceration in alkali-burned corneas. Arch Ophthalmol. 1978;96:2117–20.CrossRefPubMedGoogle Scholar
  51. 51.
    Panarelli JF, Ko A, Sidoti PA, Garcia JP, Banitt MR. Angle closure after Boston keratoprosthesis. J Glaucoma. 2013;22:725–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Levy-Clarke G, Jabs DA, Read RW, Rosenbaum JT, Vitale A, Van Gelder RN. Expert panel recommendations for the use of anti-tumor necrosis factor biologic agents in patients with ocular inflammatory disorders. Ophthalmology. 2014;121:785–96.CrossRefPubMedGoogle Scholar
  53. 53.
    Vallet H, Seve P, Biard L, Baptiste Fraison J, Bielefeld P, Perard L, Bienvenu B, Abad S, Rigolet A, Deroux A, Sene D, Perlat A, Marie I, Feurer E, Hachulla E, Fain O, Clavel G, Riviere S, Bouche PA, Gueudry J, Pugnet G, Le Hoang P, Resche Rigon M, Cacoub P, Bodaghi B, Saadoun D, Network FU. Infliximab versus adalimumab in the treatment of refractory inflammatory uveitis: a multicenter study from the French Uveitis Network. Arthritis Rheumatol. 2016;68:1522–30.CrossRefPubMedGoogle Scholar
  54. 54.
    Quartier P, Baptiste A, Despert V, Allain-Launay E, Konté-Paut I, Belot A, Kodjikian L, Monnet D, Weber M, Elie C, Bodaghi B. ADJUVITE Study Group. ADJUVITE: a double-blind, randomised, placebo-controlled trial of adalimumab in early onset, chronic, juvenile idiopathic arthritis-associated anterior uveitis. Ann Rheum Dis. 2018;77:1003–11.CrossRefPubMedGoogle Scholar
  55. 55.
    Paschalis EI, Taniguchi EV, Chodosh J, Pasquale LR, Colby K, Dohlman CH, Shen LQ. Blood levels of tumor necrosis factor alpha and its type 2 receptor are elevated in patients with Boston Type I keratoprosthesis. Curr Eye Res, in press.Google Scholar
  56. 56.
    Reim M, Overkamping B, Kuckelkorn R. Two years experience with tenonplasty. Ophthalmology. 1992;89:524–30.Google Scholar
  57. 57.
    Lee S, Tseng SCG. Amniotic membrane transplantation. Am J Ophthalmol. 1997;123:303.CrossRefPubMedGoogle Scholar
  58. 58.
    Grant WM. Experimental investigation of paracentesis in the treatment of ocular amniotic burns. Arch Ophthalmol. 1950;44:399–404.CrossRefGoogle Scholar
  59. 59.
    Webster R, Slansky H, Refojo B, Dohlman CH. The use of adhesives for the closure of corneal perforation: report of two cases. Arch Ophthalmol. 1968;80:705–19.CrossRefGoogle Scholar
  60. 60.
    Abel RJ, Binder PS, Polack EM, Kaufman HE. The results of penetrating keratoplasty after chemical burns. Trans Am Acad Ophthalmol Otolaryngol. 1975;79:584–95.Google Scholar
  61. 61.
    Dohlman CH, Cruzat A, White M. The Boston keratoprosthesis 2014 – a step in the evolution of artificial corneas. Spektrum Augenheilkd. 2014;28:226–33.CrossRefGoogle Scholar
  62. 62.
    Stone W, Herbert E. Experimental study of plastic material as replacement for the cornea. Am J Ophthalmol. 1953;36:168.CrossRefPubMedGoogle Scholar
  63. 63.
    Strampelli B. Osteo-odonto-keratoprosthesis. Ann Ottal. 1963;89:1039.PubMedGoogle Scholar
  64. 64.
    Cardona H, Prosthokeratoplasty DVG. Trans Am Acad Ophthalmol Otolaryngol. 1977;83:871.Google Scholar
  65. 65.
    Barraquer J. Keratoplasty and keratoprosthesis. Ann R Coll Surg Engl. 1967;40:71.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Falcinelli G, Falsini B, Taloni M, Colliardo P, Falcinelli G. Modified osteo-odonto-keratoprosthesis for treatment of corneal blindness: long-term anatomical and functional outcomes in 181 cases. Arch Ophthalmol. 2005;123:1319–29.CrossRefPubMedGoogle Scholar
  67. 67.
    Mannis MJ, Dohlman CH. The artificial cornea: a brief history. In: Mannis MJ, Mannis AA, editors. Corneal transplantation: a history in profiles. Ostende: JP Wayenborgh; 1999. p. 321–55.Google Scholar
  68. 68.
    Dohlman CH, Nouri M. Keratoprosthesis surgery. In: Foster CS, Azar DT, Dohlman CH, editors. Smolin and Thoft’s the cornea. Scientific foundations and clinical practice. 4th ed. Philadelphia: Lippincott, Williams & Wilkins; 2005. p. 1085.Google Scholar
  69. 69.
    Dohlman CH, Dudenhoefer EJ, Khan BF, Dohlman JG. Corneal blindness from end-stage Sjögren’s syndrome and graft-versus-host disease. Adv Exp Med Biol. 2002;506:1335–8.CrossRefPubMedGoogle Scholar
  70. 70.
    Dohlman JG, Foster CS, Dohlman CH. Boston keratoprosthesis in Stevens-Johnson syndrome: a case using infliximab to prevent tissue necrosis. Dig J Ophthalmol. 2009;15:1–5.CrossRefGoogle Scholar
  71. 71.
    Robert MC, Frenette M, Zhou C, Yan Y, Chodosh J, Jakobiec FA, Stagner AM, Vavvas D, Dohlman CH, Paschalis EI. A drug delivery system for administration of anti-TNF-α antibody. Trans Vis Sci Tech. 2016;5:1–11.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Claes H. Dohlman
    • 1
    Email author
  • Marie-Claude Robert
    • 2
  • Eleftherios I. Paschalis
    • 3
  1. 1.Cornea Department of Ophthalmology, Harvard Medical SchoolMassachusetts Eye and EarBostonUSA
  2. 2.Centre Hospitalier de l’Université de Montréal, Centre Hospitalier Universitaire Sainte-JustineDepartment of OphthalmologyMontrealCanada
  3. 3.Division Massachusetts Eye and Ear – Harvard Medical SchoolDepartment of OphthalmologyBostonUSA

Personalised recommendations