Modelling of a Soft Sensor for Exteroception and Proprioception in a Pneumatically Actuated Soft Robot

  • Abu Bakar DawoodEmail author
  • Hareesh Godaba
  • Kaspar Althoefer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11650)


Soft sensors are crucial to enable feedback in soft robots. Soft capacitive sensing is a reliable technology that can be embedded into soft pneumatic robots for obtaining proprioceptive and exteroceptive feedback. In this paper, we model a soft capacitive sensor that measures both the actuated state as well as applied external forces. We develop a Finite Element Model using a multiphysics software (COMSOL®). Using this model, we investigate the change in capacitance with the application of external force, for a range of different internal pressures and strains. We hope this study is helpful in understanding the coupling of internal inputs and external stimuli on the feedback obtained from the sensors and help us design better sensory systems for soft robots.


Soft sensor Hyperelastic materials Proprioception Exteroception COMSOL 



This work was supported in part by the EPSRC National Centre for Nuclear Robotics project (EP/R02572X/1), the Innovate UK WormBot project (104059).


  1. 1.
    Shiva, A., et al.: Tendon-based stiffening for a pneumatically actuated soft manipulator. IEEE Robot. Autom. Lett. 1, 632–637 (2016)CrossRefGoogle Scholar
  2. 2.
    Godaba, H., Li, J., Wang, Y., Zhu, J.: A soft jellyfish robot driven by a dielectric elastomer actuator. IEEE Robot. Autom. Lett. 1, 624–631 (2016)CrossRefGoogle Scholar
  3. 3.
    Lucarotti, C., Totaro, M., Sadeghi, A., Mazzolai, B., Beccai, L.: Revealing bending and force in a soft body through a plant root inspired approach. Sci. Rep. 5, 8788 (2015)CrossRefGoogle Scholar
  4. 4.
    Stilli, A., Wurdemann, H.A., Althoefer, K.: A novel concept for safe, stiffness-controllable robot links. Soft Robot. 4, 16–22 (2017)CrossRefGoogle Scholar
  5. 5.
    Althoefer, K.: Neuro-fuzzy path planning for robotic manipulators (1996)Google Scholar
  6. 6.
    Cianchetti, M., et al.: Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: the STIFF-FLOP approach. Soft Robot. 1, 122–131 (2014)CrossRefGoogle Scholar
  7. 7.
    Wurdemann, H.A., et al.: Embedded electro-conductive yarn for shape sensing of soft robotic manipulators. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (2015)Google Scholar
  8. 8.
    Popa, G.T., et al.: A stretchable, conductive rubber sensor to detect muscle contraction for prosthetic hand control. In: The 6th IEEE International Conference on E-Health and Bioengineering-EHB (2017)Google Scholar
  9. 9.
    White, E.L., Case, J.C., Kramer, R.K.: Multi-element strain gauge modules for soft sensory skins. IEEE Sens. J. 16, 2607–2616 (2016)CrossRefGoogle Scholar
  10. 10.
    White, E.L., Case, J.C., Kramer, R.K.: Multi-mode strain and curvature sensors for soft robotic applications. Sens. Actuators A Phys. 253, 188–197 (2017)CrossRefGoogle Scholar
  11. 11.
    Giffney, T., Bejanin, E., Kurian, A.S., Travas-Sejdic, J., Aw, K.: Highly stretchable printed strain sensors using multi-walled carbon nanotube/silicone rubber composites. Sens. Actuators A Phys. 259, 44–49 (2017)CrossRefGoogle Scholar
  12. 12.
    Christ, J.F., Aliheidari, N., Ameli, A., Pötschke, P.: 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater. Des. 131, 394–401 (2017)CrossRefGoogle Scholar
  13. 13.
    Koivikko, A., Raei, E.S., Mosallaei, M., Mäntysalo, M., Sariola, V.: Screen-printed curvature sensors for soft robots. IEEE Sens. J. 18, 223–230 (2018)CrossRefGoogle Scholar
  14. 14.
    Ozel, S., Keskin, N.A., Khea, D., Onal, C.D.: A precise embedded curvature sensor module for soft-bodied robots. Sens. Actuators A Phys. 236, 349–356 (2015)CrossRefGoogle Scholar
  15. 15.
    Luo, M., et al.: Toward modular soft robotics: proprioceptive curvature sensing and sliding-mode control of soft bidirectional bending modules. Soft Robot. 4, 117–125 (2017)CrossRefGoogle Scholar
  16. 16.
    Sareh, S., Noh, Y., Li, M., Ranzani, T., Liu, H., Althoefer, K.: Macrobend optical sensing for pose measurement in soft robot arms. Smart Mater. Struct. (2015)Google Scholar
  17. 17.
    Searle, T.C., Althoefer, K., Seneviratne, L., Liu, H.: An optical curvature sensor for flexible manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation (2013)Google Scholar
  18. 18.
    Zhao, H., O’Brien, K., Li, S., Shepherd, R.F.: Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. (2016)Google Scholar
  19. 19.
    Albert, J., Shao, L.Y., Caucheteur, C.: Tilted fiber Bragg grating sensors (2013)Google Scholar
  20. 20.
    Ozel, S., et al.: A composite soft bending actuation module with integrated curvature sensing. In: Proceedings of IEEE International Conference on Robotics and Automation (2016)Google Scholar
  21. 21.
    Shintake, J., Piskarev, E., Jeong, S.H., Floreano, D.: Ultrastretchable strain sensors using carbon black-filled elastomer composites and comparison of capacitive versus resistive sensors. Adv. Mater. Technol. (2018)Google Scholar
  22. 22.
    Larson, C., et al.: Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science (80) (2016)Google Scholar
  23. 23.
    Wang, T., et al.: A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing. Adv. Funct. Mater. (2018)Google Scholar
  24. 24.
    Park, J., et al.: Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 8, 4689–4697 (2014)CrossRefGoogle Scholar
  25. 25.
    Kim, S.Y., Park, S., Park, H.W., Park, D.H., Jeong, Y., Kim, D.H.: Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv. Mater. 27, 4178–4185 (2015)CrossRefGoogle Scholar
  26. 26.
    Totaro, M., Mondini, A., Bellacicca, A., Milani, P., Beccai, L.: Integrated simultaneous detection of tactile and bending cues for soft robotics. Soft Robot. 4, 400–410 (2017)CrossRefGoogle Scholar
  27. 27.
    Wurdemann, H., et al.: Integrated soft bending sensor for soft robotic manipulators (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abu Bakar Dawood
    • 1
    Email author
  • Hareesh Godaba
    • 1
  • Kaspar Althoefer
    • 1
  1. 1.Center for Advanced Robotics @ Queen Mary University of LondonLondonUK

Personalised recommendations