Advertisement

The Impact of the Robot’s Morphology in the Collective Transport

  • Jessica MeyerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11650)

Abstract

The idea of this research is to evolve the shape of robots within a swarm, in order for them to work better as a whole. Small robots are not so powerful individually, but when cooperating with each other, by physically hooking together forming a larger organism for example, they may be able to solve more complex tasks. The shape each robot has influences the way they physically interact and, taking advantage of the morphological computation phenomenon, I show that evolving the robots’ morphology in a swarm makes it more efficient for the task of transporting objects, even in comparison to evolving the robot’s controller. In order to fulfill this objective, I have evolved the shape of arm-like structures for the robots’ bodies and their controller separately, and compared the results with control experiments.

Keywords

Swarm robotics Morphological evolution Collective transport 

References

  1. 1.
    Bongard, J.: Embodied cognition: the other morphology. Neuromorphic Eng. (2008).  https://doi.org/10.2417/1200812.1420
  2. 2.
    Bongard, J.: Taking a biologically inspired approach to the design of autonomous, adaptive machines. Commun. ACM 56(8), 74–83 (2013).  https://doi.org/10.1145/2493883CrossRefGoogle Scholar
  3. 3.
    Chen, J., Gauci, M., Groß, R.: A strategy for transporting tall objects with a swarm of miniature mobile robots. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 863–869 (2013).  https://doi.org/10.1109/ICRA.2013.6630674
  4. 4.
    Cyberbotics Ltd., Michel, O., Rohrer, F., Heiniger, N., Wikibooks Contributors: Cyberbotics’ Robot Curriculum. Wikibooks (2010)Google Scholar
  5. 5.
    Deneubourg, J., Goss, S., Sandini, G., Ferrari, F., Dario, P.: Self-organizing collection and transport of objects in unpredictable environments. In: Japan-USA Symposium on Flexible Automation, pp. 1093–1098 (1990)Google Scholar
  6. 6.
    Dodig-Crnkovic, G.: The info-computational nature of morphological computing. In: Müller, V. (ed.) Philosophy and Theory of Artificial Intelligence, vol. 5, pp. 59–68. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-31674-6_5CrossRefGoogle Scholar
  7. 7.
    Groß, R., Dorigo, M.: Cooperative transport of objects of different shapes and sizes. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 106–117. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28646-2_10CrossRefGoogle Scholar
  8. 8.
    Groß, R., Dorigo, M.: Evolving a cooperative transport behavior for two simple robots. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.) EA 2003. LNCS, vol. 2936, pp. 305–316. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24621-3_25CrossRefGoogle Scholar
  9. 9.
    Groß, R., Dorigo, M.: Towards group transport by swarms of robots. Int. J. Bio-Inspired Comput. 1(1/2), 1–13 (2009).  https://doi.org/10.1504/IJBIC.2009.022770CrossRefGoogle Scholar
  10. 10.
    Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74528-2CrossRefGoogle Scholar
  11. 11.
    Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol. Comput. 1, 61–70 (2006).  https://doi.org/10.1016/j.swevo.2011.05.001CrossRefGoogle Scholar
  12. 12.
    Kube, C., Bonabeau, E.: Cooperative transport by ants and robots. Robot. Auton. Syst. 30, 85–101 (2000).  https://doi.org/10.1016/S0921-8890(99)00066-4CrossRefGoogle Scholar
  13. 13.
    Levi, P., Kernbach, S. (eds.): Symbiotic Multi-Robot Organisms: Reliability, Adaptability Evolution. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11692-6CrossRefzbMATHGoogle Scholar
  14. 14.
    O’Dowd, P., Winfield, A., Studley, M.: The distributed co-evolution of an embodied simulator and controller for adaptive swarm behaviours. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4995–5000 (2011).  https://doi.org/10.1109/IROS.2011.6094600
  15. 15.
    O’Grady, R., Groß, R., Christensen, A.: Performance benefits of self-assembly in a swarm-bot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2381–2387 (2007).  https://doi.org/10.1109/IROS.2007.4399424
  16. 16.
    Paul, C.: Morphological computation - a basis for the analysis of morphology and control requirements. Robot. Auton. Syst. 54, 619–630 (2006).  https://doi.org/10.1016/j.robot.2006.03.003CrossRefGoogle Scholar
  17. 17.
    Pfeifer, R., Bongard, J.: How the Body Shapes the Way We Think: A New View of Intelligence. The MIT Press (2006).  https://doi.org/10.7551/mitpress/3585.001.0001CrossRefGoogle Scholar
  18. 18.
    Winfield, A.F.T., Blum, C., Liu, W.: Towards an ethical robot: internal models, consequences and ethical action selection. In: Mistry, M., Leonardis, A., Witkowski, M., Melhuish, C. (eds.) TAROS 2014. LNCS (LNAI), vol. 8717, pp. 85–96. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10401-0_8CrossRefGoogle Scholar
  19. 19.
    Zambrano, D., Cianchetti, M., Laschi, C.: The morphological computation principles as a new paradigm for robotic design. In: Opinions and Outlooks on Morphological Computation, Chap. 19, pp. 214–225 (2014).  https://doi.org/10.13140/2.1.1059.4242

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Osnabrück UniversityOsnabrückGermany

Personalised recommendations