Advertisement

Development and Evaluation of a Novel Robotic System for Search and Rescue

  • Andrea Cachia
  • M. Nazmul HudaEmail author
  • Pengcheng Liu
  • Chitta Saha
  • Andrew Tickle
  • John Arvanitakis
  • Syed Mahfuzul Aziz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11650)

Abstract

Search and Rescue robotics is a relatively new field of research, which is growing rapidly as new technologies emerge. However, the robots that are usually applied to the field are generally small and have limited functionality, and almost all of them rely on direct control from a local operator. In this paper, a novel wheeled Search and Rescue robot is proposed which considers new methods of controlling the robot, including using a wireless “tether” in place of a conventional physical one. A prototype is then built which acts as a proof of concept of the robot design and wireless control. The prototype robot is then evaluated to prove its mobility, wireless control and multi-hop networking. The experimental results demonstrate the effectiveness of the proposed design incorporating the rocker-bogie suspension system and the multi-hop method of “wireless tethering”.

Keywords

Search and rescue robot Rocker-bogie system Wireless control Multi-hop network 

References

  1. 1.
    Alvarez, J., Hunt, M.: Risk and resilience in canine search and rescue handlers after 9/11. J. Trauma. Stress 18(5), 497–505 (2005)CrossRefGoogle Scholar
  2. 2.
    Casper, J., Murphy, R.R.: Human-robot interactions during the robot-assisted urban search and rescue response at the world trade center. In: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 33, no. 3, pp. 367–385 (2003)CrossRefGoogle Scholar
  3. 3.
    Choi, D., et al.: A new mobile platform (RHyMo) for smooth movement on rugged terrain. IEEE/ASME Trans. Mechatron. 21(3), 1303–1314 (2016)CrossRefGoogle Scholar
  4. 4.
    Coburn, A.W., et al.: Factors determining human casualty levels in earthquakes: mortality prediction in building collapse. In: Proceedings of the 10th World Conference on Earthquake Engineering, pp. 5989–5994 (1992)Google Scholar
  5. 5.
    Estier, T., et al.: An innovative space rover with extended climbing abilities. Robotics 2000, 333–339 (2000)Google Scholar
  6. 6.
    Fitzgerald, S.D., et al.: Pathology and toxicology findings for search-and-rescue dogs deployed to the September 11, 2001, terrorist attack sites: initial five-year surveillance. J. Vet. Diagn. Invest. 20(4), 477–484 (2008)CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Harrington, B.D., Voorhees, C.: The challenges of designing the rocker-bogie suspension for the mars exploration rover. In: NASA Jet Propulsion Laboratory (2004)Google Scholar
  9. 9.
    Huda, M.N., et al.: Behaviour-based control approach for the trajectory tracking of an underactuated planar capsule robot. IET Control Theory Appl. 9(2), 163–175 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Huda, M.N., Yu, H.: Trajectory tracking control of an underactuated capsubot. Auton. Robot. 39(2), 183–198 (2015)CrossRefGoogle Scholar
  11. 11.
    Ito, K., Maruyama, H.: Semi-autonomous serially connected multi-crawler robot for search and rescue. Adv. Robot. 30(7), 489–503 (2016)CrossRefGoogle Scholar
  12. 12.
    Kim, Y.S., et al.: Wheel transformer: a wheel-leg hybrid robot with passive transformable wheels. IEEE Trans. Robot. 30(6), 1487–1498 (2014).  https://doi.org/10.1109/TRO.2014.2365651CrossRefGoogle Scholar
  13. 13.
    Lima, P.U.: Search and rescue robots: the civil protection teams of the future. In: Third International Conference on Emerging Security Technologies, pp. 12–19 IEEE (2012)Google Scholar
  14. 14.
    Lindemann, R.A., et al.: Mars exploration rover mobility development. IEEE Robot. Autom. Mag. 13(2), 19–26 (2006)CrossRefGoogle Scholar
  15. 15.
    Liu, P., et al.: A self-propelled robotic system with a visco-elastic joint: dynamics and motion analysis. Eng. Comput. (2019)Google Scholar
  16. 16.
    Liu, S., Sun, D.: Minimizing energy consumption of wheeled mobile robots via optimal motion planning. IEEE/ASME Trans. Mechatron. 19(2), 401–411 (2014)CrossRefGoogle Scholar
  17. 17.
    Ma, Z., Duan, H.: Structural design and performance analysis for a novel wheel-legged rescue robot. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 868–873 (2016)Google Scholar
  18. 18.
    Mori, Y., et al.: Development of an omnidirectional mobile platform with a rocker-bogie suspension system. In: 42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 6134–6139 (2016)Google Scholar
  19. 19.
    Murphy, R.R.: Trial by fire [rescue robots]. IEEE Robot. Autom. Mag. 11(3), 50–61 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Neumann, M., et al.: Snake-like, tracked, mobile robot with active flippers for urban search-and-rescue tasks. Ind. Robot Int. J. 40(3), 246–250 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Qinetic: Bomb & Explosive Ordnance Disposal - Robotics & Autonomy - What we do – QinetiQ. https://www.qinetiq.com/What-we-do/Robotics/Bomb-and-Explosive-Ordnance-Disposal
  22. 22.
    Setterfield, T.P., Ellery, A.: Terrain response estimation using an instrumented rocker-bogie mobility system. IEEE Trans. Robot. 29(1), 172–188 (2013)CrossRefGoogle Scholar
  23. 23.
    Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-32552-1CrossRefzbMATHGoogle Scholar
  24. 24.
    Statheropoulos, M., et al.: Factors that affect rescue time in urban search and rescue (USAR) operations. Nat. Hazards 75(1), 57–69 (2015)CrossRefGoogle Scholar
  25. 25.
    Suzuki, N., Yamazaki, Y.: Basic research on the driving performance of an autonomous rescue robot with obstacles. In: IEEE International Conference on Robotics and Biomimetics, pp. 982–987 (2015)Google Scholar
  26. 26.
    Tardioli, D.: A proof-of-concept application of multi-hop robot teleoperation with online map building. In: 9th IEEE International Symposium on Industrial Embedded Systems, pp. 210–217. IEEE (2014)Google Scholar
  27. 27.
    Timotheou, S., Loukas, G.: Autonomous networked robots for the establishment of wireless communication in uncertain emergency response scenarios. In: Proceedings of the 2009 ACM symposium on Applied Computing, pp. 1171–1175. ACM (2009)Google Scholar
  28. 28.
    Wang, P., et al.: The nonfragile controller with covariance constraint for stable motion of quadruped search-rescue robot. Adv. Mech. Eng. 6, 917381 (2014)CrossRefGoogle Scholar
  29. 29.
    Wang, W., et al.: Development of search-and-rescue robots for underground coal mine applications. J. Field Robot. 31(3), 386–407 (2014)CrossRefGoogle Scholar
  30. 30.
    Wang, X., et al.: Dynamic analysis for the leg mechanism of a wheel-leg hybrid rescue robot. In: UKACC International Conference on Control, pp. 504–508 (2014)Google Scholar
  31. 31.
    Yu, H., et al.: Travelling capsule with two drive mechanisms (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrea Cachia
    • 1
  • M. Nazmul Huda
    • 1
    Email author
  • Pengcheng Liu
    • 2
  • Chitta Saha
    • 1
  • Andrew Tickle
    • 1
  • John Arvanitakis
    • 1
  • Syed Mahfuzul Aziz
    • 3
  1. 1.Coventry UniversityCoventryUK
  2. 2.Cardiff Metropolitan UniversityCardiffUK
  3. 3.University of South AustraliaAdelaideAustralia

Personalised recommendations