Advertisement

Autonomous Air-Hockey Playing Cobot Using Optimal Control and Vision-Based Bayesian Tracking

  • Ahmad AlAttarEmail author
  • Louis Rouillard
  • Petar Kormushev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11650)

Abstract

This paper presents a novel autonomous air-hockey playing collaborative robot (cobot) that provides human-like gameplay against human opponents. Vision-based Bayesian tracking of the puck and striker are used in an Analytic Hierarchy Process (AHP)-based probabilistic tactical layer for high-speed perception. The tactical layer provides commands for an active control layer that controls the Cartesian position and yaw angle of a custom end effector. The active layer uses optimal control of the cobot’s posture inside the task nullspace. The kinematic redundancy is resolved using a weighted Moore-Penrose pseudo-inversion technique. Experiments with human players show high-speed human-like gameplay with potential applications in the growing field of entertainment robotics.

Keywords

Air hockey Cobot Bayesian tracking Analytic Hierarchy Process Autonomous robot Entertainment robotics 

References

  1. 1.
    Bentivegna, D.C., Atkeson, C.G.: A framework for learning from observation using primitives. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 263–270. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45135-8_20CrossRefGoogle Scholar
  2. 2.
    Bishop, B., Spong, M.: Vision-based control of an air hockey playing robot. IEEE Control Syst. Mag. 19(3), 23–32 (1999)CrossRefGoogle Scholar
  3. 3.
    Djuric, P.M., et al.: Particle filtering. IEEE Signal Process. Mag. 20(5), 19–38 (2003)CrossRefGoogle Scholar
  4. 4.
    Ernst, M.O., Banks, M.S.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429 EP (2002)CrossRefGoogle Scholar
  5. 5.
    Falck, F., Doshi, S., Smuts, N., Lingi, J., Rants, K., Kormushev, P.: Human-centered manipulation and navigation with Robot DE NIRO. In: IROS 2018 Workshop: Towards Robots that Exhibit Manipulation Intelligence, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 2018Google Scholar
  6. 6.
    Franka Emika GmbH: Panda arm (2017). https://www.franka.de/
  7. 7.
    Nakamura, Y.: Advanced Robotics: Redundancy and Optimization, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1990)Google Scholar
  8. 8.
    Namiki, A., Matsushita, S., Ozeki, T., Nonami, K.: Hierarchical processing architecture for an air-hockey robot system. In: 2013 IEEE International Conference on Robotics and Automation, pp. 1187–1192. IEEE (2013)Google Scholar
  9. 9.
    Ogawa, M., et al.: Development of air hockey robot improving with the human players. In: IECON 2011, pp. 3364–3369 (2011)Google Scholar
  10. 10.
    Shimada, H., Kutsuna, Y., Kudoh, S., Suehiro, T.: A two-layer tactical system for an air-hockey-playing robot. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6985–6990. IEEE (2017)Google Scholar
  11. 11.
    Sorenson, H.: Kalman Filtering Techniques, Advances in Control Systems, vol. 3. Elsevier, Amsterdam (1966)zbMATHGoogle Scholar
  12. 12.
    Taitler, A., Shimkin, N.: Learning control for air hockey striking using deep reinforcement learning. In: 2017 International Conference on Control, Artificial Intelligence, Robotics Optimization (ICCAIRO), pp. 22–27 (2017)Google Scholar
  13. 13.
    Thorpe, S., Fize, D., Marlot, C.: Speed of processing in the human visual system. Nature 381, 520 EP (1996)CrossRefGoogle Scholar
  14. 14.
    Wang, W.J., Tsai, I.D., Chen, Z.D., Wang, G.H.: A vision based air hockey system with fuzzy control. In: Proceedings of the International Conference on Control Applications, vol. 2, pp. 754–759 (2002)Google Scholar
  15. 15.
    Whitaker, R.: The analytic hierarchy process - what it is and how it is used. Math. Model. 9, 161–176 (1987)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wolpert, D.M., Flanagan, J.R.: Motor prediction. Curr. Biol. 11(18), R729–R732 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Robot Intelligence LabImperial College LondonLondonUK

Personalised recommendations