Advertisement

A Cross-Landscape Evaluation of Multi-robot Team Performance in Static Task-Allocation Domains

  • Dingdian ZhangEmail author
  • Eric Schneider
  • Elizabeth Sklar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11650)

Abstract

The performance of a multi-robot team varies when certain environmental parameters change. The study presented here examines the performance of four task allocation mechanisms, compared across a mission landscape that is defined by a set of environmental conditions. The landscape is categorised by three dimensions: (1) single-robot versus multi-robot tasks; (2) independent versus constrained task correspondence; and (3) static versus dynamic allocation of tasks with respect to mission execution. Two different task scenarios and two different starting formations were implemented with each environmental condition. Experiments were conducted on teams of simulated and physical robots, to demonstrate the portability of the results. This paper investigates the “static allocation” portion of the mission landscape, filling in a gap that has not been investigated previously. Experimental results are presented which confirm that the previous conclusion still holds: there is no single task allocation mechanism that consistently ranks best in performance when tasks are executed.

Keywords

Multi-robot team Auction mechanism Task allocation 

References

  1. 1.
    Berhault, M., et al.: Robot exploration with combinatorial auctions. In: Proceedings of IROS (2003)Google Scholar
  2. 2.
    Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: a survey and analysis. Proc. IEEE 94(7), 1257–1270 (2006)CrossRefGoogle Scholar
  3. 3.
    Gerkey, B.P., Mataríc, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 23(9), 1257–1270 (2004)CrossRefGoogle Scholar
  4. 4.
    Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: tools for multi-robot and distributed sensor systems. In: Proceedings of International Conference on Advanced Robotics, vol. 1 (2003)Google Scholar
  5. 5.
    Gerkey, B.P., Mataric, M.J.: Sold!: Auction methods for multirobot coordination. IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)CrossRefGoogle Scholar
  6. 6.
    Golfarelli, M., Maio, D., Rizzi, S.: A task-swap negotiation protocol based on the contract net paradigm. Technical report 005–97, DEIS, CSITE - Università di Bologna (1997)Google Scholar
  7. 7.
    Gombolay, M., Wilcox, R., Shah, J.A.: Fast scheduling of multi-robot teams with temporospatial constraints. In: Robotics: Science and Systems (2013)Google Scholar
  8. 8.
    Koenig, S., Keskinocak, P., Tovey, C.A.: Progress on agent coordination with cooperative auctions. In: AAAI (2010)Google Scholar
  9. 9.
    Koenig, S., et al.: The power of sequential single-item auctions for agent coordination. In: Proceedings of AAAI (2006)Google Scholar
  10. 10.
    Korsah, G.A., Stentz, A., Dias, M.B.: A comprehensive taxonomy for multi-robot task allocation. Int. J. Robot. Res. 32(12), 1495–1512 (2013)CrossRefGoogle Scholar
  11. 11.
    Kraus, S.: Automated negotiation and decision making in multiagent environments. In: Luck, M., Mařík, V., Štěpánková, O., Trappl, R. (eds.) ACAI 2001. LNCS (LNAI), vol. 2086, pp. 150–172. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-47745-4_7CrossRefzbMATHGoogle Scholar
  12. 12.
    Lagoudakis, M.G., et al.: Auction-based multi-robot routing. In: Proceedings of RSS (2005)Google Scholar
  13. 13.
    Landén, D., Heintz, F., Doherty, P.: Complex task allocation in mixed-initiative delegation: a UAV case study. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS (LNAI), vol. 7057, pp. 288–303. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-25920-3_20CrossRefGoogle Scholar
  14. 14.
    Luo, L., Chakraborty, N., Sycara, K.: Multi-robot assignment algorithm for tasks with set precedence constraints. In: Proceedings of ICRA (2011)Google Scholar
  15. 15.
    Matarić, M.J., Sukhatme, G.S., Østergaard, E.H.: Multi-robot task allocation in uncertain environments. Auton. Robot. 14(2–3), 255–263 (2003)CrossRefGoogle Scholar
  16. 16.
    Nanjanath, M., Gini, M.: Repeated auctions for robust task execution by a robot team. Robot. Auton. Syst. 58(7), 900–909 (2010)CrossRefGoogle Scholar
  17. 17.
    Nunes, E., Gini, M.: Multi-robot auctions for allocation of tasks with temporal constraints. In: Proceedings of AAAI (2015)Google Scholar
  18. 18.
    Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA OSS Workshop (2009)Google Scholar
  19. 19.
    Sariel, S., Balch, T.: Efficient bids on task allocation for multi-robot exploration. In: Proceedings of FLAIRS (2006)Google Scholar
  20. 20.
    Schneider, E.: Mechanism selection for multi-robot task allocation. Ph.D. thesis, Univ of Liverpool, UK (2018)Google Scholar
  21. 21.
    Schneider, E., Balas, O., Özgelen, A.T., Sklar, E.I., Parsons, S.: An empirical evaluation of auction-based task allocation in multi-robot teams (extended abstract). In: Proceedings of AAMAS, May 2014Google Scholar
  22. 22.
    Schneider, E., Balas, O., Özgelen, A.T., Sklar, E.I., Parsons, S.: Evaluating auction-based task allocation in multi-robot teams. In: ARMS Workshop at AAMAS, Paris, France, May 2014Google Scholar
  23. 23.
    Schneider, E., Sklar, E.I., Parsons, S.: Evaluating multi-robot teamwork in parameterised environments. In: Alboul, L., Damian, D., Aitken, J.M.M. (eds.) TAROS 2016. LNCS (LNAI), vol. 9716, pp. 301–313. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40379-3_32CrossRefGoogle Scholar
  24. 24.
    Schneider, E., Sklar, E.I., Parsons, S., Özgelen, A.T.: Auction-based task allocation for multi-robot teams in dynamic environments. In: Dixon, C., Tuyls, K. (eds.) TAROS 2015. LNCS (LNAI), vol. 9287, pp. 246–257. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22416-9_29CrossRefGoogle Scholar
  25. 25.
    Schoenig, A., Pagnucco, M.: Evaluating sequential single-item auctions for dynamic task allocation. In: AI 2010: Advances in Artificial Intelligence (2011)Google Scholar
  26. 26.
    Smith, R.G.: The contract net protocol: high-level communication and control in a distributed problem solver. In: Gasser, L., Huhns, M. (eds.) Distributed Artificial Intelligence. Morgan Kaufmann Publishers Inc., San Mateo (1988)Google Scholar
  27. 27.
    Tovey, C., Lagoudakis, M.G., Jain, S., Koenig, S.: Generation of bidding rules for auction-based robot coordination. In: Parker, L.E., Schneider, F.E., Schultz, A.C. (eds.) Multi-Robot Systems. From Swarms to Intelligent Automata, vol. III. Springer, Dordrecht (2005).  https://doi.org/10.1007/1-4020-3389-3_1CrossRefGoogle Scholar
  28. 28.
    Wellman, M.P., Wurman, P.R.: Market-aware agents for a multiagent world. Robot. Auton. Syst. 24, 115–125 (1998)CrossRefGoogle Scholar
  29. 29.
    Zheng, X., Koenig, S., Tovey, C.: Improving sequential single-item auctions. In: Proceedings of IROS (2006)Google Scholar
  30. 30.
    Zlot, R., Stentz, A., Dias, M.B., Thayer, S.: Multi-robot exploration controlled by a market economy. In: Proceedings of ICRA, vol. 3 (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dingdian Zhang
    • 1
    Email author
  • Eric Schneider
    • 1
  • Elizabeth Sklar
    • 1
  1. 1.Depaerment of InformaticsKing’s College LondonLondonUK

Personalised recommendations