Advertisement

Collision-Free Optimal Trajectory for a Controlled Floating Space Robot

  • Asma SeddaouiEmail author
  • Chakravarthini M. Saaj
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11650)

Abstract

Space robots are key to the establishment of a new era of low-cost in-orbit operations. Given the complexities involved in designing and operating of a space robot, several challenges arise and developing new advanced methodologies for control and motion planning is essential. Finding an optimal trajectory for the space robot to attain an out-of-reach grasping point on the target or when the motion of the arm is restricted by singular configurations or obstacles, is a difficult task using the Degrees of Freedom (DoF) of the arm only. Hence, using the redundancy offered by the extra degrees of freedom of the spacecraft base to help the arm reach the target whilst avoiding singularities and obstacles is mission critical. In this paper, an optimal path planning algorithm using Genetic Algorithm was developed for a controlled-floating space robot that takes advantage of the controlled motion of the spacecraft base to safely reach the grasping point. This algorithm minimises several cost functions whilst satisfying constraints on the velocity. Moreover, the algorithm requires only the Cartesian location of the grasping point, to generate a path for the space robot without a priori knowledge of any desired path. The optimal trajectory is tracked using a nonlinear adaptive \(H_{\infty }\) controller for the simultaneous motion of both the manipulator and the base spacecraft. The results presented prove the efficacy of the path planner and controller and it is based on a six DoF manipulator mounted to a a six DoF spacecraft base.

Keywords

Optimal trajectory Singularity avoidance Nonlinear control Controlled-floating space robot Genetic Algorithm 

References

  1. 1.
    Eckersley, S., et al.: In-orbit assembly of large spacecraft using small spacecraft and innovative technologies. In: 69th International Astronautical Congress (IAC), Bremen, Germany, 1–5 October 2018Google Scholar
  2. 2.
    Henshaw, C.G.: The DARPA phoenix spacecraft servicing program: overview and plans for risk reduction. In: International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), Montreal, 17–19 June 2014Google Scholar
  3. 3.
    Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68, 1–26 (2014)CrossRefGoogle Scholar
  4. 4.
    Seddaoui, A., Saaj, C.: Combined nonlinear H-infinity controller for a controlled-floating space robot. J. Guidance Dyn. Control (JGDC) 22, 1–8 (2019).  https://doi.org/10.2514/1.G003811CrossRefGoogle Scholar
  5. 5.
    Dubowsky, S., Torres, M.A.: Path planning for space manipulators to minimize spacecraft attitude disturbances. In: IEEE International Conference on Robotics and Automation, Sacramento, 9–11 April 1991Google Scholar
  6. 6.
    Piersigilli, P., Sharf, I., Misra, A.: Reactionless capture of a satellite by a two degree-of-freedom manipulator. Acta Astronaut. 66(1–2), 183–192 (2010)CrossRefGoogle Scholar
  7. 7.
    Yoshida, K., Hashizume, K., Abiko, S.: Zero reaction maneuver: flight validation with ETS-VII space robot and extension to kinematically redundant arm. In: IEEE International Conference on Robotics and Automation, Seoul, South Korea, 21–26 May 2001Google Scholar
  8. 8.
    Rybus, T., Seweryn, K.: Manipulator trajectories during orbital servicing mission: numerical simulations and experiments on microgravity simulator. Prog. Flight Dyn. Guidance Navig. Control-Volume 10(10), 239–264 (2018)CrossRefGoogle Scholar
  9. 9.
    Papadopoulos, E., Dubowsky, S.: Dynamic singularities in free-floating space manipulators. J. Dyn. Syst. Measur. Control 115(1), 44–52 (1993)CrossRefGoogle Scholar
  10. 10.
    Rybus, T.: Obstacle avoidance in space robotics: review of major challenges and proposed solutions. Prog. Aerosp. Sci. 101, 31–48 (2018)CrossRefGoogle Scholar
  11. 11.
    Seddaoui, A., Saaj, C.: H-infinity control for a controlled floating robotic spacecraft. In: International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), Madrid, Spain, 4–6 June 2018Google Scholar
  12. 12.
    Wei, X.-P., Zhang, J.-X., Zhou, D.-S., Zhang, Q.: Optimal path planning for minimizing base disturbance of space robot. Int. J. Adv. Robot. Syst. 13(2), 41 (2016)CrossRefGoogle Scholar
  13. 13.
    Wang, M., Luo, J., Walter, U.: Trajectory planning of free-floating space robot using particle swarm optimization (PSO). Acta Astronaut. 112, 77–88 (2015)CrossRefGoogle Scholar
  14. 14.
    Wang, M., Luo, J., Yuan, J., Walter, U.: Coordinated trajectory planning of dual-arm space robot using constrained particle swarm optimization. Acta Astronaut. 146, 259–272 (2018)CrossRefGoogle Scholar
  15. 15.
    Kaigom, E.G., Jung, T.J., Roßmann, J.: Optimal motion planning of a space robot with base disturbance minimization. In: 11th Symposium on Advanced Space Technologies in Robotics and Automation, Noordwijk, 12–14 April 2011Google Scholar
  16. 16.
    Zhang, L., Jia, Q., Chen, G., Sun, H.: Pre-impact trajectory planning for minimizing base attitude disturbance in space manipulator systems for a capture task. Chin. J. Aeronaut. 28(4), 1199–1208 (2015)CrossRefGoogle Scholar
  17. 17.
    Xu, W., Li, C., Liang, B., Liu, Y., Xu, Y.: The cartesian path planning of free-floating space robot using particle swarm optimization. Int. J. Adv. Robot. Syst. 5(3), 27 (2008)CrossRefGoogle Scholar
  18. 18.
    Huang, P., Chen, K., Xu, Y.: Optimal path planning for minimizing disturbance of space robot. In: 9th International Conference on Control, Automation, Robotics and Vision, Singapore, 5–8 December 2006Google Scholar
  19. 19.
    Chen, Z., Zhou, W.: Path planning for a space-based manipulator system based on quantum genetic algorithm. J. Robot. 2017, 10 (2017)Google Scholar
  20. 20.
    Wang, M., Luo, J., Fang, J., Yuan, J.: Optimal trajectory planning of free-floating space manipulator using differential evolution algorithm. Adv. Space Res. 61(6), 1525–1536 (2018)CrossRefGoogle Scholar
  21. 21.
    Lampariello, R., Agrawal, S., Hirzinger, G.: Optimal motion planning for free-flying robots. In: IEEE International Conference on Robotics and Automation, Taipei, 14–19 September 2003Google Scholar
  22. 22.
    Misra, G., Bai, X.: Optimal path planning for free-flying space manipulators via sequential convex programming. J. Control Dyn. 40(11), 3019–3026 (2017)Google Scholar
  23. 23.
    Virgili-Llop, J., Zagaris, C., Zappulla, R., Bradstreet, A., Romano, M.: Laboratory experiments on the capture of a tumbling object by a spacecraft-manipulator system using a convex-programming-based guidance. In: AAS/AIAA Astrodynamics Specialist Conference, Stevenson, 20–24 August 2017Google Scholar
  24. 24.
    Wilson, E., Rock, S.M.: Neural-network control of a free-flying space robot. Trans. Soc. Model. Simul. Int. 65(2), 103–115 (1995)CrossRefGoogle Scholar
  25. 25.
    Deb, K., Sundar, J.: Reference point based multi-objective optimization using evolutionary algorithms. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Washington, 08–12 July 2006Google Scholar
  26. 26.
    Seddaoui, A., Saaj, C.M., Eckersley, S.: Adaptive H infinity controller for precise manoeuvring of a small space robot accepted. In: The IEEE International Conference on Robotics and Automation (ICRA), Montreal, Canada, 20–24 May 2019Google Scholar
  27. 27.
    Yoshikawa, T.: Dynamic manipulability of robot manipulators. Trans. Soc. Instrum. Control Eng. 21(9), 970–975 (1985)CrossRefGoogle Scholar
  28. 28.
    Chehouri, A., Younes, R., Perron, J., Ilinca, A.: A constraint-handling technique for genetic algorithms using a violation factor. J. Comput. Sci. Sci. Publ. 12, 350–362 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of SurreyGuildfordUK

Personalised recommendations