Advertisement

Image Processing: What Is Needed and Unique for Vessel Wall Imaging?

  • Chun YuanEmail author
  • Zach Miller
  • William Kerwin
Chapter

Abstract

Image processing plays a key role in vessel wall imaging. Vessel wall analysis typically requires multiple contrast-weighted imaging, image registration, and both qualitative and quantitative measurements to assess vessel wall status for disease. Image processing plays a key role in all these areas, and currently available software systems are capable of quantitative measurements of vessel area, thickness, eccentricity, and composition to assess vessel and disease status. New improvements in techniques and artificial intelligence offer new possibilities which can dramatically improve vessel wall analysis.

Keywords

MRI Vessel wall imaging Image processing Vessel morphology Atherosclerosis 

References

  1. 1.
    Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316(22):1371–5.  https://doi.org/10.1056/NEJM198705283162204.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Mann JM, Davies MJ. Vulnerable plaque. Relation of characteristics to degree of stenosis in human coronary arteries. Circulation. 1996;94(5):928–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Virmani R, Burke AP, Kolodgie FD, Farb A. Vulnerable plaque: the pathology of unstable coronary lesions. J Interv Cardiol. 2002;15(6):439–46.PubMedCrossRefGoogle Scholar
  4. 4.
    Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Juhani Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation. 2003;108(14):1664–72.  https://doi.org/10.1161/01.CIR.0000087480.94275.97.CrossRefGoogle Scholar
  5. 5.
    Underhill HR, Hatsukami TS, Fayad ZA, Fuster V, Yuan C. MRI of carotid atherosclerosis: clinical implications and future directions. Nat Rev Cardiol. 2010;7(3):165–73.  https://doi.org/10.1038/nrcardio.2009.246.PubMedCrossRefGoogle Scholar
  6. 6.
    Underhill HR, Hatsukami TS, Cai J, Yu W, DeMarco JK, Polissar NL, Ota H, Zhao X, Dong L, Oikawa M, Yuan C. A noninvasive imaging approach to assess plaque severity: the carotid atherosclerosis score. AJNR Am J Neuroradiol. 2010;31(6):1068–75.  https://doi.org/10.3174/ajnr.A2007. PubMed PMID: 20093315; PMCID: PMC2885536.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the unstable plaque. Prog Cardiovasc Dis. 2002;44(5):349–56.PubMedCrossRefGoogle Scholar
  8. 8.
    Saam T, Yuan C, Chu B, Takaya N, Underhill H, Cai J, Tran N, Polissar NL, Neradilek B, Jarvik GP, Isaac C, Garden GA, Maravilla KR, Hashimoto B, Hatsukami TS. Predictors of carotid atherosclerotic plaque progression as measured by noninvasive magnetic resonance imaging. Atherosclerosis. 2007;194(2):e34–42.  https://doi.org/10.1016/j.atherosclerosis.2006.08.016. PubMed PMID: 16978632; PMCID: PMC2243074.PubMedCrossRefGoogle Scholar
  9. 9.
    Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Chuang YC, DeFalco RA, Leon MB. Limitations of angiography in the assessment of plaque distribution in coronary artery disease: a systematic study of target lesion eccentricity in 1446 lesions. Circulation. 1996;93(5):924–31.PubMedCrossRefGoogle Scholar
  10. 10.
    Saba L, Yuan C, Hatsukami TS, Balu N, Qiao Y, DeMarco JK, Saam T, Moody AR, Li D, Matouk CC, Johnson MH, Jäger HR, Mossa-Basha M, Kooi ME, Fan Z, Saloner D, Wintermark M, Mikulis DJ, Wasserman BA, VWISGotASo N. Carotid artery wall imaging: perspective and guidelines from the ASNR vessel wall imaging study group and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol. 2018;39(2):E9–E31. Epub 2018/01/11.  https://doi.org/10.3174/ajnr.A5488.CrossRefGoogle Scholar
  11. 11.
    Kerwin WS, O’Brien KD, Ferguson MS, Polissar N, Hatsukami TS, Yuan C. Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology. 2006;241(2):459–68. PMCID: 16966482.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Wasserman BA, Casal SG, Astor BC, Aletras AH, Arai AE. Wash-in kinetics for gadolinium-enhanced magnetic resonance imaging of carotid atheroma. J Magn Reson Imaging. 2005;21(1):91–5.  https://doi.org/10.1002/jmri.20228.PubMedCrossRefGoogle Scholar
  13. 13.
    Owen DR, Shalhoub J, Miller S, Gauthier T, Doryforou O, Davies AH, Leen EL. Inflammation within carotid atherosclerotic plaque: assessment with late-phase contrast-enhanced US. Radiology. 2010;255(2):638–44.  https://doi.org/10.1148/radiol.10091365.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Carr JJ. Calcium scoring for cardiovascular computed tomography: how, when and why? Radiol Clin N Am. 2019;57(1):1–12.  https://doi.org/10.1016/j.rcl.2018.09.002.PubMedCrossRefGoogle Scholar
  15. 15.
    Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15(4):827–32.CrossRefGoogle Scholar
  16. 16.
    O’Leary DH, Polak JF. Intima-media thickness: a tool for atherosclerosis imaging and event prediction. Am J Cardiol. 2002;90(10C):18L–21L.PubMedCrossRefGoogle Scholar
  17. 17.
    O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med. 1999;340(1):14–22.  https://doi.org/10.1056/NEJM199901073400103.PubMedCrossRefGoogle Scholar
  18. 18.
    Wasserman BA, Sharrett AR, Lai S, Gomes AS, Cushman M, Folsom AR, Bild DE, Kronmal RA, Sinha S, Bluemke DA. Risk factor associations with the presence of a lipid core in carotid plaque of asymptomatic individuals using high-resolution MRI: the multi-ethnic study of atherosclerosis (MESA). Stroke. 2008;39(2):329–35. Epub 2008/01/03.  https://doi.org/10.1161/STROKEAHA.107.498634.PubMedCrossRefGoogle Scholar
  19. 19.
    Zavodni AE, Wasserman BA, McClelland RL, Gomes AS, Folsom AR, Polak JF, Lima JA, Bluemke DA. Carotid artery plaque morphology and composition in relation to incident cardiovascular events: the Multi-Ethnic Study of Atherosclerosis (MESA). Radiology. 2014;271(2):381–9. Epub 2014/03/04.  https://doi.org/10.1148/radiol.14131020. PubMed PMID: 24592924; PMCID: PMC4263652.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kerwin W, Xu D, Liu F, Saam T, Underhill H, Takaya N, Chu B, Hatsukami T, Yuan C. Magnetic resonance imaging of carotid atherosclerosis: plaque analysis. Top Magn Reson Imaging. 2007;18(5):371–8. PMCID: 18025991.PubMedCrossRefGoogle Scholar
  21. 21.
    Sun J, Zhao XQ, Balu N, Neradilek MB, Isquith DA, Yamada K, Cantón G, Crouse JR, Anderson TJ, Huston J, O’Brien K, Hippe DS, Polissar NL, Yuan C, Hatsukami TS. Carotid plaque lipid content and fibrous cap status predict systemic CV outcomes: the MRI Substudy in AIM-HIGH. JACC Cardiovasc Imaging. 2017;10(3):241–9.  https://doi.org/10.1016/j.jcmg.2016.06.017. PubMed PMID: 28279371; PMCID: PMC5347460.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Underhill HR, Yuan C, Zhao XQ, Kraiss LW, Parker DL, Saam T, Chu B, Takaya N, Liu F, Polissar NL, Neradilek B, Raichlen JS, Cain VA, Waterton JC, Hamar W, Hatsukami TS. Effect of rosuvastatin therapy on carotid plaque morphology and composition in moderately hypercholesterolemic patients: a high-resolution magnetic resonance imaging trial. Am Heart J. 2008;155(3):584–8. PMCID: 18294500.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhao XQ, Dong L, Hatsukami T, Phan BA, Chu B, Moore A, Lane T, Neradilek MB, Polissar N, Monick D, Lee C, Underhill H, Yuan C. MR imaging of carotid plaque composition during lipid-lowering therapy a prospective assessment of effect and time course. JACC Cardiovasc Imaging. 2011;4(9):977–86.  https://doi.org/10.1016/j.jcmg.2011.06.013. PubMed PMID: 21920335; PMCID: PMC3638021.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    O’Brien KD, Hippe DS, Chen H, Neradilek MB, Probstfield JL, Peck S, Isquith DA, Canton G, Yuan C, Polissar NL, Zhao XQ, Kerwin WS. Longer duration of statin therapy is associated with decreased carotid plaque vascularity by magnetic resonance imaging. Atherosclerosis. 2016;245:74–81.  https://doi.org/10.1016/j.atherosclerosis.2015.11.032.PubMedCrossRefGoogle Scholar
  25. 25.
    Takaya N, Yuan C, Chu B, Saam T, Underhill H, Cai J, Tran N, Polissar NL, Isaac C, Ferguson MS, Garden GA, Cramer SC, Maravilla KR, Hashimoto B, Hatsukami TS. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with magnetic resonance imaging - initial results. Stroke. 2006;37:818–23.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Mani V, Muntner P, Gidding SS, Aguiar SH, El Aidi H, Weinshelbaum KB, Taniguchi H, van der Geest R, Reiber JH, Bansilal S, Farkouh M, Fuster V, Postley JE, Woodward M, Fayad ZA. Cardiovascular magnetic resonance parameters of atherosclerotic plaque burden improve discrimination of prior major adverse cardiovascular events. J Cardiovasc Magn Reson. 2009;11:10. Epub 2009/04/24.  https://doi.org/10.1186/1532-429X-11-10. PubMed PMID: 19393089; PMCID: PMC2680849.
  27. 27.
    Zhou C, Qiao H, He L, Yuan C, Chen H, Zhang Q, Li R, Wang W, Du F, Li C, Zhao X. Characterization of atherosclerotic disease in thoracic aorta: a 3D, multicontrast vessel wall imaging study. Eur J Radiol. 2016;85(11):2030–5. Epub 2016/09/14.  https://doi.org/10.1016/j.ejrad.2016.09.006.PubMedCrossRefGoogle Scholar
  28. 28.
    Qiao Y, Guallar E, Suri FK, Liu L, Zhang Y, Anwar Z, Mirbagheri S, Xie YJ, Nezami N, Intrapiromkul J, Zhang S, Alonso A, Chu H, Couper D, Wasserman BA. MR Imaging Measures of Intracranial Atherosclerosis in a Population-based Study. Radiology. 2016;280(3):860–8. Epub 2016/03/29.  https://doi.org/10.1148/radiol.2016151124. PubMed PMID: 27022858; PMCID: PMC5006718.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Cao Y, Sun Y, Zhou B, Zhao H, Zhu Y, Xu J, Liu X. Atherosclerotic plaque burden of middle cerebral artery and extracranial carotid artery characterized by MRI in patients with acute ischemic stroke in China: association and clinical relevance. Neurol Res. 2017;39(4):344–50. Epub 2017/01/30.  https://doi.org/10.1080/01616412.2017.1281196.PubMedCrossRefGoogle Scholar
  30. 30.
    Qiao H, He Q, Chen Z, Xu D, Huang L, He L, Jiang L, Li R, Luo J, Yuan C, Zhao X. Identification of early atherosclerotic lesions in carotid arteries with quantitative characteristics measured by 3D MRI. J Magn Reson Imaging. 2016;44(5):1270–6. Epub 2016/04/15.  https://doi.org/10.1002/jmri.25264.PubMedCrossRefGoogle Scholar
  31. 31.
    Xu Y, Li D, Yuan C, Zhou Z, He L, Li R, Cui Y, Li Q, Zheng Z, Zhao X. Association of severity between carotid and intracranial artery atherosclerosis. Ann Clin Transl Neurol. 2018;5(7):843–9. Epub 2018/06/04.  https://doi.org/10.1002/acn3.590. PubMed PMID: 30009201; PMCID: PMC6043773.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    von Birgelen C, Mintz GS, de Vrey EA, Kimura T, Popma JJ, Airiian SG, Leon MB, Nobuyoshi M, Serruys PW, de Feyter PJ. Atherosclerotic coronary lesions with inadequate compensatory enlargement have smaller plaque and vessel volumes: observations with three dimensional intravascular ultrasound in vivo. Heart. 1998;79(2):137–42. PubMed PMID: 9538305; PMCID: PMC1728616.CrossRefGoogle Scholar
  33. 33.
    Mossa-Basha M, Shibata DK, Hallam DK, de Havenon A, Hippe DS, Becker KJ, Tirschwell DL, Hatsukami T, Balu N, Yuan C. Added value of vessel wall magnetic resonance imaging for differentiation of nonocclusive intracranial vasculopathies. Stroke. 2017;48(11):3026–33. Epub 2017/10/13.  https://doi.org/10.1161/STROKEAHA.117.018227. PubMed PMID: 29030476; PMCID: PMC5687293.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Costopoulos C, Huang Y, Brown AJ, Calvert PA, Hoole SP, West NEJ, Gillard JH, Teng Z, Bennett MR. Plaque rupture in coronary atherosclerosis is associated with increased plaque structural stress. JACC Cardiovasc Imaging. 2017;10(12):1472–83. Epub 2017/07/19.  https://doi.org/10.1016/j.jcmg.2017.04.017. PubMed PMID: 28734911; PMCID: PMC5725311.PubMedGoogle Scholar
  35. 35.
    Li F, McDermott MM, Li D, Carroll TJ, Hippe DS, Kramer CM, Fan Z, Zhao X, Hatsukami TS, Chu B, Wang J, Yuan C. The association of lesion eccentricity with plaque morphology and components in the superficial femoral artery: a high-spatial-resolution, multi-contrast weighted CMR study. J Cardiovasc Magn Reson. 2010;12:37. Epub 2010/07/01.  https://doi.org/10.1186/1532-429X-12-37. PubMed PMID: 20591197; PMCID: PMC2904754.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Yuan C, Kerwin WS, Yarnykh VL, Cai J, Saam T, Chu B, Takaya N, Ferguson MS, Underhill H, Xu D, Liu F, Hatsukami TS. MRI of atherosclerosis in clinical trials. NMR Biomed. 2006;19(6):636–54.  https://doi.org/10.1002/nbm.1065.PubMedCrossRefGoogle Scholar
  37. 37.
    Toussaint JF, LaMuraglia GM, Southern JF, Fuster V, Kantor HL. Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation. 1996;94(5):932–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Hatsukami TS, Ferguson MS, Beach KW, Gordon D, Detmer P, Burns D, Alpers C, Strandness DE. Carotid plaque morphology and clinical events. Stroke. 1997;28(1):95–100.PubMedCrossRefGoogle Scholar
  39. 39.
    Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation. 2002;106(11):1368–73.PubMedCrossRefGoogle Scholar
  40. 40.
    Saam T, Ferguson MS, Yarnykh VL, Takaya N, Xu D, Polissar NL, Hatsukami TS, Yuan C. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol. 2005;25(1):234–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Liu F, Xu D, Ferguson MS, Chu B, Saam T, Takaya N, Hatsukami TS, Yuan C, Kerwin WS. Automated in vivo segmentation of carotid plaque MRI with Morphology-Enhanced probability maps. Magn Reson Med. 2006;55(3):659–68; PMCID: 16470594.PubMedCrossRefGoogle Scholar
  42. 42.
    Kerwin WS, Liu F, Yarnykh V, Underhill H, Oikawa M, Yu W, Hatsukami TS, Yuan C. Signal features of the atherosclerotic plaque at 3.0 Tesla versus 1.5 Tesla: impact on automatic classification. J Magn Reson Imaging. 2008;28(4):987–95.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Yoneyama T, Sun J, Hippe DS, Balu N, Xu D, Kerwin WS, Hatsukami TS, Yuan C. In vivo semi-automatic segmentation of multicontrast cardiovascular magnetic resonance for prospective cohort studies on plaque tissue composition: initial experience. Int J Cardiovasc Imaging. 2016;32(1):73–81. Epub 2015/07/14.  https://doi.org/10.1007/s10554-015-0704-0. PubMed PMID: 26169389; PMCID: PMC4707978.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Underhill HR, Kerwin WS, Hatsukami TS, Yuan C. Automated measurement of mean wall thickness in the common carotid artery by MRI: a comparison to intima-media thickness by B-mode ultrasound. J Magn Reson Imaging. 2006;24(2):379–87.  https://doi.org/10.1002/jmri.20636.PubMedCrossRefGoogle Scholar
  45. 45.
    Liu W, Balu N, Sun J, Zhao X, Chen H, Yuan C, Zhao H, Xu J, Wang G, Kerwin WS. Segmentation of carotid plaque using multicontrast 3D gradient echo MRI. J Magn Reson Imaging. 2012;35(4):812–9.  https://doi.org/10.1002/jmri.22886. PubMed PMID: 22127812; PMCID: PMC3298637.PubMedCrossRefGoogle Scholar
  46. 46.
    Sun J, Zhao XQ, Balu N, Hippe DS, Hatsukami TS, Isquith DA, Yamada K, Neradilek MB, Cantón G, Xue Y, Fleg JL, Desvigne-Nickens P, Klimas MT, Padley RJ, Vassileva MT, Wyman BT, Yuan C. Carotid magnetic resonance imaging for monitoring atherosclerotic plaque progression: a multicenter reproducibility study. Int J Cardiovasc Imaging. 2015;31(1):95–103.  https://doi.org/10.1007/s10554-014-0532-7. PubMed PMID: 25216871; PMCID: PMC4297722.CrossRefGoogle Scholar
  47. 47.
    Kerwin W, Hooker A, Spilker M, Vicini P, Ferguson M, Hatsukami T, Yuan C. Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation. 2003;107(6):851–6.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kerwin WS, Oikawa M, Yuan C, Jarvik GP, Hatsukami TS. MR imaging of adventitial vasa vasorum in carotid atherosclerosis. Magn Reson Med. 2008;59(3):507–14. PMCID: 18306402.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Mandell DM, Mossa-Basha M, Qiao Y, Hess CP, Hui F, Matouk C, Johnson MH, Daemen MJ, Vossough A, Edjlali M, Saloner D, Ansari SA, Wasserman BA, Mikulis DJ, VWISGotASo N. Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol. 2017;38(2):218–29. Epub 2016/07/28.  https://doi.org/10.3174/ajnr.A4893.CrossRefGoogle Scholar
  50. 50.
    Liu Z, Bai Z, Huang C, Huang M, Huang L, Xu D, Zhang H, Yuan C, Luo J. Inter-operator reproducibility of carotid elastography for identification of vulnerable atherosclerotic plaques. IEEE Trans Ultrason Ferroelectr Freq Control. 2019;66:505. Epub 2018/12/19.  https://doi.org/10.1109/TUFFC.2018.2888479.PubMedCrossRefGoogle Scholar
  51. 51.
    Di Leo N, Venturini L, de Soccio V, Forte V, Lucchetti P, Cerone G, Alagna G, Caratozzolo M, Messineo D, Di Gioia C, Di Marzo L, Fresilli D, De Vito C, Pugliese G, Cantisani V, D’Ambrosio F. Multiparametric ultrasound evaluation with CEUS and shear wave elastography for carotid plaque risk stratification. J Ultrasound. 2018;21(4):293–300. Epub 2018/10/31.  https://doi.org/10.1007/s40477-018-0320-7. PubMed PMID: 30378007; PMCID: PMC6237715.PubMedCrossRefGoogle Scholar
  52. 52.
    Cloutier G, Cardinal MR, Ju Y, Giroux MF, Lanthier S, Soulez G. Carotid plaque vulnerability assessment using ultrasound elastography and echogenicity analysis. AJR Am J Roentgenol. 2018;211(4):847–55. Epub 2018/08/30.  https://doi.org/10.2214/AJR.17.19211.PubMedCrossRefGoogle Scholar
  53. 53.
    Huang C, He Q, Huang M, Huang L, Zhao X, Yuan C, Luo J. Non-invasive identification of vulnerable atherosclerotic plaques using texture analysis in ultrasound carotid elastography: an in vivo feasibility study validated by magnetic resonance imaging. Ultrasound Med Biol. 2017;43(4):817–30. Epub 2017/01/30.  https://doi.org/10.1016/j.ultrasmedbio.2016.12.003.PubMedCrossRefGoogle Scholar
  54. 54.
    Andrews JPM, Fayad ZA, Dweck MR. New methods to image unstable atherosclerotic plaques. Atherosclerosis. 2018;272:118–28. Epub 2018/03/14.  https://doi.org/10.1016/j.atherosclerosis.2018.03.021.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Li Chen, Huilin Zhao, Niranjan Balu, Xihai Zhao, Rui Li, Jianrong Xu, Thomas Hatsukami, Jenq-Neng Hwang, Chun Yuan editors. Carotid artery localization and lesion classification on 3D-MERGE MRI using neural network and object tracking methods. ISMRM, Paris; 2018.Google Scholar
  56. 56.
    Yuan C, Beach KW, Smith LH Jr, Hatsukami TS. Measurement of atherosclerotic carotid plaque size in vivo using high resolution magnetic resonance imaging. Circulation. 1998;98(24):2666–71.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Zhang S, Cai J, Luo Y, Han C, Polissar NL, Hatsukami TS, Yuan C. Measurement of carotid wall volume and maximum area with contrast-enhanced 3D MR imaging: initial observations. Radiology. 2003;228(1):200–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of WashingtonSeattleUSA
  2. 2.University of Washington Vascular Imaging Laboratory, Department of RadiologySeattleUSA

Personalised recommendations