Evolution Under Antibiotic Treatments: Interplay Between Antibiotic Persistence, Tolerance, and Resistance
Chapter
First Online:
Abstract
In this chapter, we describe the experimental evolution of antibiotic tolerance and persistence under antibiotic treatments and how these phenomena can speed up the subsequent evolution of resistance. The first two parts are dedicated to defining the difference between antibiotic resistance, tolerance, and persistence with qualitative definitions and quantitative metrics. The third part describes experimental observations of the evolution of tolerance and persistence under antibiotic treatments. The fourth part shows that tolerance and persistence speed up the evolution of antibiotic resistance. In each part, mathematical subsections can be skipped by the reader without losing the qualitative understanding of the effects.
References
- Ackermann, M. (2015). A functional perspective on phenotypic heterogeneity in microorganisms. Nature Reviews. Microbiology, 13, 497–508.PubMedCrossRefPubMedCentralGoogle Scholar
- Audrain, B., et al. (2013). Induction of the Cpx envelope stress pathway contributes to Escherichia coli tolerance to antimicrobial peptides. Applied and Environmental Microbiology, 79, 7770–7779.PubMedPubMedCentralCrossRefGoogle Scholar
- Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistenceas a phenotypic switch. Science, 305, 1622–1625.CrossRefGoogle Scholar
- Balaban, N. Q., et al. (2019). Definitions and guidelines for research on antibiotic persistence. Nature Reviews. Microbiology, 1, 441–448.CrossRefGoogle Scholar
- Baranyi, J., George, S. M., & Kutalik, Z. (2009). Parameter estimation for the distribution of single cell lag times. Journal of Theoretical Biology, 259, 24–30.PubMedCrossRefPubMedCentralGoogle Scholar
- Barry, A. L., et al. (1999). Methods for determining bactericidal activity of antimicrobial agents; approved guideline (Vol. 19, pp. 1–3). Wayne, PA: Clinical and Laboratory Standard Institute.Google Scholar
- Baym, M., et al. (2016). Spatiotemporal microbial evolution on antibiotic landscapes. Science, 353, 1147–1151.PubMedPubMedCentralCrossRefGoogle Scholar
- Bergkessel, M., Basta, D. W., & Newman, D. K. (2016). The physiology of growth arrest: Uniting molecular and environmental microbiology. Nature Reviews. Microbiology, 14, 549–562.PubMedCrossRefPubMedCentralGoogle Scholar
- Best, G. K., Best, N. H., & Koval, A. V. (1974). Evidence for participation of autolysins in bactericidal action of oxacillin on Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 6, 825–830.PubMedPubMedCentralCrossRefGoogle Scholar
- Bizzini, A., et al. (2010). A single mutation in enzyme I of the sugar phosphotransferase system confers penicillin tolerance to Streptococcus gordonii. Antimicrobial Agents and Chemotherapy, 54, 259–266.PubMedCrossRefPubMedCentralGoogle Scholar
- Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews. Microbiology, 13, 42–51.PubMedCrossRefGoogle Scholar
- Brauner, A., Fridman, O., Gefen, O., & Balaban, N. Q. (2016). Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nature Reviews. Microbiology, 14, 320–330.CrossRefGoogle Scholar
- Brauner, A., Shoresh, N., Fridman, O., & Balaban, N. Q. (2017). An experimental framework for quantifying bacterial tolerance. Biophysical Journal, 112, 2664–2671.PubMedPubMedCentralCrossRefGoogle Scholar
- Britt, N. S., et al. (2017). Relationship between vancomycin tolerance and clinical outcomes in Staphylococcus aureus bacteraemia. The Journal of Antimicrobial Chemotherapy, 72, 535–542.PubMedCrossRefPubMedCentralGoogle Scholar
- Dengler Haunreiter, V., et al. (2019). In-host evolution of Staphylococcus epidermidis in a pacemaker-associated endocarditis resulting in increased antibiotic tolerance. Nature Communications, 10, 1149.PubMedPubMedCentralCrossRefGoogle Scholar
- Denny, A. E., Peterson, L. R., Gerding, D. N., & Hall, W. H. (1979). Serious staphylococcal infections with strains tolerant to bactericidal antibiotics. Archives of Internal Medicine, 139, 1026–1031.PubMedCrossRefPubMedCentralGoogle Scholar
- Dörr, T., Vulić, M., & Lewis, K. (2010). Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biology, 8, e1000317.PubMedPubMedCentralCrossRefGoogle Scholar
- Du, D., et al. (2018). Multidrug efflux pumps: Structure, function and regulation. Nature Reviews. Microbiology, 16, 523–539.PubMedCrossRefPubMedCentralGoogle Scholar
- Eagle, H., & Musselman, A. D. (1948). The rate of bactericidal action of penicillin in vitro as a function of its concentration, and its paradoxically reduced activity at high concentrations against certain organisms. The Journal of Experimental Medicine, 88, 99–131.PubMedPubMedCentralCrossRefGoogle Scholar
- El-Halfawy, O. M., & Valvano, M. A. (2015). Antimicrobial heteroresistance: An emerging field in need of clarity. Clinical Microbiology Reviews, 28, 191–207.PubMedPubMedCentralCrossRefGoogle Scholar
- Entenza, J. M., Caldelari, I., Glauser, M. P., Francioli, P., & Moreillon, P. (1997). Importance of genotypic and phenotypic tolerance in the treatment of experimental endocarditis due to Streptococcus gordonii. The Journal of Infectious Diseases, 175, 70–76.PubMedCrossRefGoogle Scholar
- EUCAST. (2019). EUCAST reading guide. The European Committee on Antimicrobial Susceptibility Testing.Google Scholar
- Fridman, O., Goldberg, A., Ronin, I., Shoresh, N., & Balaban, N. Q. (2014). Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature, 513, 418–421.CrossRefGoogle Scholar
- Gefen, O., Chekol, B., Strahilevitz, J., & Balaban, N. Q. (2017). TDtest: Easy detection of bacterial tolerance and persistence in clinical isolates by a modified disk-diffusion assay. Scientific Reports, 7, 41284.PubMedPubMedCentralCrossRefGoogle Scholar
- Gutierrez, A., et al. (2017). Understanding and sensitizing density-dependent persistence to quinolone antibiotics. Molecular Cell, 68, 1147–1154.e3.CrossRefGoogle Scholar
- Handwerger, S., & Tomasz, A. (1985). Antibiotic tolerance among clinical isolates of bacteria. Annual Review of Pharmacology and Toxicology, 25, 349–380.PubMedCrossRefPubMedCentralGoogle Scholar
- Helaine, S., et al. (2014). Internalization of salmonella by macrophages induces formation of nonreplicating persisters. Science, 343, 204–208.PubMedPubMedCentralCrossRefGoogle Scholar
- Honsa, E. S., et al. (2017). Rela mutant Enterococcus faecium with multiantibiotic tolerance arising in an immunocompromised host. MBio, 8, 1–12.CrossRefGoogle Scholar
- Huang, G.-R., Saakian, D. B., & Hu, C.-K. (2018). Accurate analytic solution of chemical master equations for gene regulation networks in a single cell. Physical Review E, 97, 012412.PubMedCrossRefPubMedCentralGoogle Scholar
- Jacoby, G. A. (2009). AmpC β-lactamases. Clinical Microbiology Reviews, 22, 161–182.PubMedPubMedCentralCrossRefGoogle Scholar
- Jõers, A., Kaldalu, N., Tenson, T., & Jo, A. (2010). The frequency of persisters in Escherichia coli reflects the kinetics of awakening from dormancy. Journal of Bacteriology, 192, 3379–3384.PubMedPubMedCentralCrossRefGoogle Scholar
- Johnson, P. J. T., Levin, B. R., Levin, B. R., Li, L., & Karger, B. (2013). Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLoS Genetics, 9, e1003123.PubMedPubMedCentralCrossRefGoogle Scholar
- Joyce, L. F., Downes, J., Stockman, K., & Andrew, J. H. (1992). Comparison of five methods, including the PDM Epsilometer test (E test), for antimicrobial susceptibility testing of Pseudomonas aeruginosa. Journal of Clinical Microbiology, 30, 2709–2713.PubMedPubMedCentralGoogle Scholar
- Levin, B. R., Concepción-Acevedo, J., & Udekwu, K. I. (2014). Persistence: A copacetic and parsimonious hypothesis for the existence of non-inherited resistance to antibiotics. Current Opinion in Microbiology, 21, 18–21.CrossRefGoogle Scholar
- Levin, B. R., & Udekwu, K. I. (2010). Population dynamics of antibiotic treatment: A mathematical model and hypotheses for time-kill and continuous-culture experiments. Antimicrobial Agents and Chemotherapy, 54, 3414–3426.PubMedPubMedCentralCrossRefGoogle Scholar
- Levin-Reisman, I., et al. (2010). Automated imaging with ScanLag reveals previously undetectable bacterial growth phenotypes. Nature Methods, 7, 737–739.PubMedCrossRefPubMedCentralGoogle Scholar
- Levin-Reisman, I., et al. (2017). Antibiotic tolerance facilitates the evolution of resistance. Science, 355, 826–830.PubMedCrossRefPubMedCentralGoogle Scholar
- Lewis, K. (2007). Persister cells, dormancy and infectious disease. Nature Reviews. Microbiology, 5, 48–56.PubMedCrossRefPubMedCentralGoogle Scholar
- Mechler, L., et al. (2015). A novel point mutation promotes growth phase-dependent daptomycin tolerance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 59, 5366–5376.PubMedPubMedCentralCrossRefGoogle Scholar
- Meylan, S., Andrews, I. W., & Collins, J. J. (2018). Targeting antibiotic tolerance, pathogen by pathogen. Cell, 172, 1228–1238.PubMedCrossRefPubMedCentralGoogle Scholar
- Michiels, J. E., Van den Bergh, B., Verstraeten, N., & Michiels, J. (2016). Molecular mechanisms and clinical implications of bacterial persistence. Drug Resistance Updates, 29, 76–89.PubMedCrossRefPubMedCentralGoogle Scholar
- Monod, J. (1949). The growth of bacterial cultures. Annual Review of Microbiology, 3, 371–394.CrossRefGoogle Scholar
- Moreillon, P., Tomasz, A., & Tomasz, A. (1988). Penicillin resistance and defective lysis in clinical isolates of pneumococci: Evidence for two kinds of antibiotic pressure operating in the clinical environment. The Journal of Infectious Diseases, 157, 1150–1157.PubMedCrossRefPubMedCentralGoogle Scholar
- Moyed, H. S., & Bertrand, K. P. (1983). hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. Journal of Bacteriology, 155, 768–775.PubMedPubMedCentralGoogle Scholar
- Mulcahy, L. R., Burns, J. L., Lory, S., & Lewis, K. (2010). Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. Journal of Bacteriology, 192, 6191–6199.PubMedPubMedCentralCrossRefGoogle Scholar
- Mwangi, M. M., et al. (2007). Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proceedings of the National Academy of Sciences, 104, 9451–9456.CrossRefGoogle Scholar
- Nemeth, J., Oesch, G., & Kuster, S. P. (2015). Bacteriostatic versus bactericidal antibiotics for patients with serious bacterial infections: Systematic review and meta-analysis. The Journal of Antimicrobial Chemotherapy, 70, 382–395.PubMedCrossRefPubMedCentralGoogle Scholar
- Nicoloff, H., Hjort, K., Levin, B. R., & Andersson, D. I. (2019). The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nature Microbiology, 4, 504.PubMedCrossRefPubMedCentralGoogle Scholar
- Pearl, S., Gabay, C., Kishony, R., Oppenheim, A., & Balaban, N. Q. (2008). Nongenetic individuality in the host–phage interaction. PLoS Biology, 6, e120.PubMedPubMedCentralCrossRefGoogle Scholar
- Radzikowski, J. L., Schramke, H., & Heinemann, M. (2017). Bacterial persistence from a system-level perspective. Current Opinion in Biotechnology, 46, 98–105.PubMedCrossRefPubMedCentralGoogle Scholar
- Rahal, J. J., Chan, Y. K., & Johnson, G. (1986). Relationship of staphylococcal tolerance, teichoic acid antibody, and serum bactericidal activity to therapeutic outcome in Staphylococcus aureus bacteremia. The American Journal of Medicine, 81, 43–52.PubMedCrossRefPubMedCentralGoogle Scholar
- Roberts, J. A., et al. (2014). DALI: Defining antibiotic levels in intensive care unit patients: Are current ß-lactam antibiotic doses sufficient for critically ill patients? Clinical Infectious Diseases, 58, 1072–1083.PubMedCrossRefPubMedCentralGoogle Scholar
- Sabath, L. D., Laverdiere, M., Wheeler, N., Blazevic, D., & Wilkinson, B. J. (1977). A new type of penicillin resistance of Staphylococcus aureus. Lancet, 309, 443–447.CrossRefGoogle Scholar
- Scherrer, R., & Moyed, H. S. (1988). Conditional impairment of cell division and altered lethality in hipA mutants of Escherichia coli K-12. Journal of Bacteriology, 170, 3321–3326.PubMedPubMedCentralCrossRefGoogle Scholar
- Sieradzki, K., Leski, T., Dick, J., Borio, L., & Tomasz, A. (2003). Evolution of a vancomycin-intermediate Staphylococcus aureus strain in vivo: Multiple changes in the antibiotic resistance phenotypes of a single lineage of methicillin-resistant S. aureus under the impact of antibiotics administered for chemotherapy. Journal of Clinical Microbiology, 41, 1687–1693.PubMedPubMedCentralCrossRefGoogle Scholar
- Sun, S., Berg, O. G., Roth, J. R., & Andersson, D. I. (2009). Contribution of gene amplification to evolution of increased antibiotic resistance in Salmonella typhimurium. Genetics, 182, 1183–1195.PubMedPubMedCentralCrossRefGoogle Scholar
- Tomasz, A. (1979). Escherichia coli mutants tolerant. Journal of Bacteriology, 140, 955–963.PubMedPubMedCentralGoogle Scholar
- Tomasz, A. (1985). Antibiotic tolerance among clinical isolates of bacteria. Antimicrobial Agents and Chemotherapy, 7, 368–386.Google Scholar
- Toprak, E., et al. (2012). Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nature Genetics, 44, 101–105.CrossRefGoogle Scholar
- Tsimring, L. S. (2014). Noise in biology. Reports on Progress in Physics, 77, 026601.PubMedCrossRefGoogle Scholar
- Van den Bergh, B., et al. (2016). Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence. Nature Microbiology, 1, 16020.CrossRefGoogle Scholar
- Vega, N. M., Allison, K. R., Khalil, A. S., & Collins, J. J. (2012). Signaling-mediated bacterial persister formation. Nature Chemical Biology, 8, 431–433.PubMedPubMedCentralCrossRefGoogle Scholar
- Wolfson, J. S., Hooper, D. C., McHugh, G. L., Bozza, M. A., & Swartz, M. N. (1990). Mutants of Escherichia coli K-12 exhibiting reduced killing by both quinolone and beta-lactam antimicrobial agents. Antimicrobial Agents and Chemotherapy, 34, 1938–1943.PubMedPubMedCentralCrossRefGoogle Scholar
- Zhi, J., Nightingale, C. H., & Quintiliani, R. (1986). A pharmacodynamic model for the activity of antibiotics against microorganisms under nonsaturable conditions. Journal of Pharmaceutical Sciences, 75, 1063–1067.PubMedCrossRefGoogle Scholar
- Zhou, K., George, S. M., Li, P. L., & Baranyi, J. (2012). Effect of periodic fluctuation in the osmotic environment on the adaptation of Salmonella. Food Microbiology, 30, 298–302.PubMedCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019