Advertisement

Evolution Under Antibiotic Treatments: Interplay Between Antibiotic Persistence, Tolerance, and Resistance

  • Nathalie Q. BalabanEmail author
  • Jiafeng Liu
Chapter

Abstract

In this chapter, we describe the experimental evolution of antibiotic tolerance and persistence under antibiotic treatments and how these phenomena can speed up the subsequent evolution of resistance. The first two parts are dedicated to defining the difference between antibiotic resistance, tolerance, and persistence with qualitative definitions and quantitative metrics. The third part describes experimental observations of the evolution of tolerance and persistence under antibiotic treatments. The fourth part shows that tolerance and persistence speed up the evolution of antibiotic resistance. In each part, mathematical subsections can be skipped by the reader without losing the qualitative understanding of the effects.

References

  1. Ackermann, M. (2015). A functional perspective on phenotypic heterogeneity in microorganisms. Nature Reviews. Microbiology, 13, 497–508.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Audrain, B., et al. (2013). Induction of the Cpx envelope stress pathway contributes to Escherichia coli tolerance to antimicrobial peptides. Applied and Environmental Microbiology, 79, 7770–7779.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistenceas a phenotypic switch. Science, 305, 1622–1625.CrossRefGoogle Scholar
  4. Balaban, N. Q., et al. (2019). Definitions and guidelines for research on antibiotic persistence. Nature Reviews. Microbiology, 1, 441–448.CrossRefGoogle Scholar
  5. Baranyi, J., George, S. M., & Kutalik, Z. (2009). Parameter estimation for the distribution of single cell lag times. Journal of Theoretical Biology, 259, 24–30.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Barry, A. L., et al. (1999). Methods for determining bactericidal activity of antimicrobial agents; approved guideline (Vol. 19, pp. 1–3). Wayne, PA: Clinical and Laboratory Standard Institute.Google Scholar
  7. Baym, M., et al. (2016). Spatiotemporal microbial evolution on antibiotic landscapes. Science, 353, 1147–1151.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bergkessel, M., Basta, D. W., & Newman, D. K. (2016). The physiology of growth arrest: Uniting molecular and environmental microbiology. Nature Reviews. Microbiology, 14, 549–562.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Best, G. K., Best, N. H., & Koval, A. V. (1974). Evidence for participation of autolysins in bactericidal action of oxacillin on Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 6, 825–830.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bizzini, A., et al. (2010). A single mutation in enzyme I of the sugar phosphotransferase system confers penicillin tolerance to Streptococcus gordonii. Antimicrobial Agents and Chemotherapy, 54, 259–266.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews. Microbiology, 13, 42–51.PubMedCrossRefGoogle Scholar
  12. Brauner, A., Fridman, O., Gefen, O., & Balaban, N. Q. (2016). Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nature Reviews. Microbiology, 14, 320–330.CrossRefGoogle Scholar
  13. Brauner, A., Shoresh, N., Fridman, O., & Balaban, N. Q. (2017). An experimental framework for quantifying bacterial tolerance. Biophysical Journal, 112, 2664–2671.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Britt, N. S., et al. (2017). Relationship between vancomycin tolerance and clinical outcomes in Staphylococcus aureus bacteraemia. The Journal of Antimicrobial Chemotherapy, 72, 535–542.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Dengler Haunreiter, V., et al. (2019). In-host evolution of Staphylococcus epidermidis in a pacemaker-associated endocarditis resulting in increased antibiotic tolerance. Nature Communications, 10, 1149.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Denny, A. E., Peterson, L. R., Gerding, D. N., & Hall, W. H. (1979). Serious staphylococcal infections with strains tolerant to bactericidal antibiotics. Archives of Internal Medicine, 139, 1026–1031.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Dörr, T., Vulić, M., & Lewis, K. (2010). Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biology, 8, e1000317.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Du, D., et al. (2018). Multidrug efflux pumps: Structure, function and regulation. Nature Reviews. Microbiology, 16, 523–539.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Eagle, H., & Musselman, A. D. (1948). The rate of bactericidal action of penicillin in vitro as a function of its concentration, and its paradoxically reduced activity at high concentrations against certain organisms. The Journal of Experimental Medicine, 88, 99–131.PubMedPubMedCentralCrossRefGoogle Scholar
  20. El-Halfawy, O. M., & Valvano, M. A. (2015). Antimicrobial heteroresistance: An emerging field in need of clarity. Clinical Microbiology Reviews, 28, 191–207.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Entenza, J. M., Caldelari, I., Glauser, M. P., Francioli, P., & Moreillon, P. (1997). Importance of genotypic and phenotypic tolerance in the treatment of experimental endocarditis due to Streptococcus gordonii. The Journal of Infectious Diseases, 175, 70–76.PubMedCrossRefGoogle Scholar
  22. EUCAST. (2019). EUCAST reading guide. The European Committee on Antimicrobial Susceptibility Testing.Google Scholar
  23. Fridman, O., Goldberg, A., Ronin, I., Shoresh, N., & Balaban, N. Q. (2014). Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature, 513, 418–421.CrossRefGoogle Scholar
  24. Gefen, O., Chekol, B., Strahilevitz, J., & Balaban, N. Q. (2017). TDtest: Easy detection of bacterial tolerance and persistence in clinical isolates by a modified disk-diffusion assay. Scientific Reports, 7, 41284.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gutierrez, A., et al. (2017). Understanding and sensitizing density-dependent persistence to quinolone antibiotics. Molecular Cell, 68, 1147–1154.e3.CrossRefGoogle Scholar
  26. Handwerger, S., & Tomasz, A. (1985). Antibiotic tolerance among clinical isolates of bacteria. Annual Review of Pharmacology and Toxicology, 25, 349–380.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Helaine, S., et al. (2014). Internalization of salmonella by macrophages induces formation of nonreplicating persisters. Science, 343, 204–208.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Honsa, E. S., et al. (2017). Rela mutant Enterococcus faecium with multiantibiotic tolerance arising in an immunocompromised host. MBio, 8, 1–12.CrossRefGoogle Scholar
  29. Huang, G.-R., Saakian, D. B., & Hu, C.-K. (2018). Accurate analytic solution of chemical master equations for gene regulation networks in a single cell. Physical Review E, 97, 012412.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Jacoby, G. A. (2009). AmpC β-lactamases. Clinical Microbiology Reviews, 22, 161–182.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Jõers, A., Kaldalu, N., Tenson, T., & Jo, A. (2010). The frequency of persisters in Escherichia coli reflects the kinetics of awakening from dormancy. Journal of Bacteriology, 192, 3379–3384.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Johnson, P. J. T., Levin, B. R., Levin, B. R., Li, L., & Karger, B. (2013). Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLoS Genetics, 9, e1003123.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Joyce, L. F., Downes, J., Stockman, K., & Andrew, J. H. (1992). Comparison of five methods, including the PDM Epsilometer test (E test), for antimicrobial susceptibility testing of Pseudomonas aeruginosa. Journal of Clinical Microbiology, 30, 2709–2713.PubMedPubMedCentralGoogle Scholar
  34. Levin, B. R., Concepción-Acevedo, J., & Udekwu, K. I. (2014). Persistence: A copacetic and parsimonious hypothesis for the existence of non-inherited resistance to antibiotics. Current Opinion in Microbiology, 21, 18–21.CrossRefGoogle Scholar
  35. Levin, B. R., & Udekwu, K. I. (2010). Population dynamics of antibiotic treatment: A mathematical model and hypotheses for time-kill and continuous-culture experiments. Antimicrobial Agents and Chemotherapy, 54, 3414–3426.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Levin-Reisman, I., et al. (2010). Automated imaging with ScanLag reveals previously undetectable bacterial growth phenotypes. Nature Methods, 7, 737–739.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Levin-Reisman, I., et al. (2017). Antibiotic tolerance facilitates the evolution of resistance. Science, 355, 826–830.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Lewis, K. (2007). Persister cells, dormancy and infectious disease. Nature Reviews. Microbiology, 5, 48–56.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Mechler, L., et al. (2015). A novel point mutation promotes growth phase-dependent daptomycin tolerance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 59, 5366–5376.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Meylan, S., Andrews, I. W., & Collins, J. J. (2018). Targeting antibiotic tolerance, pathogen by pathogen. Cell, 172, 1228–1238.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Michiels, J. E., Van den Bergh, B., Verstraeten, N., & Michiels, J. (2016). Molecular mechanisms and clinical implications of bacterial persistence. Drug Resistance Updates, 29, 76–89.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Monod, J. (1949). The growth of bacterial cultures. Annual Review of Microbiology, 3, 371–394.CrossRefGoogle Scholar
  43. Moreillon, P., Tomasz, A., & Tomasz, A. (1988). Penicillin resistance and defective lysis in clinical isolates of pneumococci: Evidence for two kinds of antibiotic pressure operating in the clinical environment. The Journal of Infectious Diseases, 157, 1150–1157.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Moyed, H. S., & Bertrand, K. P. (1983). hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. Journal of Bacteriology, 155, 768–775.PubMedPubMedCentralGoogle Scholar
  45. Mulcahy, L. R., Burns, J. L., Lory, S., & Lewis, K. (2010). Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. Journal of Bacteriology, 192, 6191–6199.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Mwangi, M. M., et al. (2007). Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proceedings of the National Academy of Sciences, 104, 9451–9456.CrossRefGoogle Scholar
  47. Nemeth, J., Oesch, G., & Kuster, S. P. (2015). Bacteriostatic versus bactericidal antibiotics for patients with serious bacterial infections: Systematic review and meta-analysis. The Journal of Antimicrobial Chemotherapy, 70, 382–395.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Nicoloff, H., Hjort, K., Levin, B. R., & Andersson, D. I. (2019). The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nature Microbiology, 4, 504.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Pearl, S., Gabay, C., Kishony, R., Oppenheim, A., & Balaban, N. Q. (2008). Nongenetic individuality in the host–phage interaction. PLoS Biology, 6, e120.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Radzikowski, J. L., Schramke, H., & Heinemann, M. (2017). Bacterial persistence from a system-level perspective. Current Opinion in Biotechnology, 46, 98–105.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Rahal, J. J., Chan, Y. K., & Johnson, G. (1986). Relationship of staphylococcal tolerance, teichoic acid antibody, and serum bactericidal activity to therapeutic outcome in Staphylococcus aureus bacteremia. The American Journal of Medicine, 81, 43–52.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Roberts, J. A., et al. (2014). DALI: Defining antibiotic levels in intensive care unit patients: Are current ß-lactam antibiotic doses sufficient for critically ill patients? Clinical Infectious Diseases, 58, 1072–1083.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Sabath, L. D., Laverdiere, M., Wheeler, N., Blazevic, D., & Wilkinson, B. J. (1977). A new type of penicillin resistance of Staphylococcus aureus. Lancet, 309, 443–447.CrossRefGoogle Scholar
  54. Scherrer, R., & Moyed, H. S. (1988). Conditional impairment of cell division and altered lethality in hipA mutants of Escherichia coli K-12. Journal of Bacteriology, 170, 3321–3326.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Sieradzki, K., Leski, T., Dick, J., Borio, L., & Tomasz, A. (2003). Evolution of a vancomycin-intermediate Staphylococcus aureus strain in vivo: Multiple changes in the antibiotic resistance phenotypes of a single lineage of methicillin-resistant S. aureus under the impact of antibiotics administered for chemotherapy. Journal of Clinical Microbiology, 41, 1687–1693.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Sun, S., Berg, O. G., Roth, J. R., & Andersson, D. I. (2009). Contribution of gene amplification to evolution of increased antibiotic resistance in Salmonella typhimurium. Genetics, 182, 1183–1195.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Tomasz, A. (1979). Escherichia coli mutants tolerant. Journal of Bacteriology, 140, 955–963.PubMedPubMedCentralGoogle Scholar
  58. Tomasz, A. (1985). Antibiotic tolerance among clinical isolates of bacteria. Antimicrobial Agents and Chemotherapy, 7, 368–386.Google Scholar
  59. Toprak, E., et al. (2012). Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nature Genetics, 44, 101–105.CrossRefGoogle Scholar
  60. Tsimring, L. S. (2014). Noise in biology. Reports on Progress in Physics, 77, 026601.PubMedCrossRefGoogle Scholar
  61. Van den Bergh, B., et al. (2016). Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence. Nature Microbiology, 1, 16020.CrossRefGoogle Scholar
  62. Vega, N. M., Allison, K. R., Khalil, A. S., & Collins, J. J. (2012). Signaling-mediated bacterial persister formation. Nature Chemical Biology, 8, 431–433.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Wolfson, J. S., Hooper, D. C., McHugh, G. L., Bozza, M. A., & Swartz, M. N. (1990). Mutants of Escherichia coli K-12 exhibiting reduced killing by both quinolone and beta-lactam antimicrobial agents. Antimicrobial Agents and Chemotherapy, 34, 1938–1943.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Zhi, J., Nightingale, C. H., & Quintiliani, R. (1986). A pharmacodynamic model for the activity of antibiotics against microorganisms under nonsaturable conditions. Journal of Pharmaceutical Sciences, 75, 1063–1067.PubMedCrossRefGoogle Scholar
  65. Zhou, K., George, S. M., Li, P. L., & Baranyi, J. (2012). Effect of periodic fluctuation in the osmotic environment on the adaptation of Salmonella. Food Microbiology, 30, 298–302.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations