Advertisement

The Psychological Foundations of Classification

  • Martin EbelingEmail author
  • Günther Rötter
Chapter
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

Phenomenology assumes that human thought is decisively shaped by the conditions of human perception. Therefore, all human concepts have paragons in perception. Accordingly, classification is based on elementary psychic functions, and here, we demonstrate that the same psychic functions are also effective in hearing and music perception. Thus, we deduce the psychological prerequisites of classification from music perception and elementary music cognition. Classification is a certain case of categorization, a mental property which determines all thinking (Sect. 20.1). The principles of categorization were discussed since ancient times, i.e., by Aristotle (Sect. 20.2). Categorization requires the ability to compare objects according to a certain criterion. Carl Stumpf (1848–1936) demonstrated that all comparisons are psychologically based on fundamental relations (German: Grundverhältnisse) which also determine pitch perception (Sect. 20.3). These fundamental relations govern the perception of Gestalt, which follows certain Gestalt laws (Sect. 20.4). Intuitive classification criterions result from differences concerning Gestalt. The importance of the Gestalt laws is demonstrated by some recent studies in current musicology which all refer to the concept of pitch (Sect. 20.5). Remarkably, the pitch space and the number space have the same topological structure. Discrete and continuous parameters in statistic have analogies in discrete and continuous concepts of pitch (Sect. 20.6). Particularly noteworthy is the analogy between periodic data and the cyclic organization of tone chroma by the classification of pitch “modulo octave” due to the sound phenomenon of octave identification (Sect. 20.7).

References

  1. Bregman, A. S. (1990). Auditory scene analysis. Cambridge: MIT Press.CrossRefGoogle Scholar
  2. Brentano, F. (1933). Kategorienlehre. Meiner, Darmstadt (1933, unchanged reprint 1968).Google Scholar
  3. Butler, D. (1992). The Muscian’s guide to perception and cognition. New York: Schirmer.Google Scholar
  4. Colin, C. E. (1953). Some experiments on the recognition of speech, with one and with two ears. JASA, 25, 975–979.  https://doi.org/10.1121/1.1907229.CrossRefGoogle Scholar
  5. Deutsch, D. (1972). Octave generalization and tune recognition. Perception and Psychophysics, 11, 411–412.  https://doi.org/10.3758/BF03206280.CrossRefGoogle Scholar
  6. Deutsch, D. (1975). Two-channel listening to musical scales. JASA, 57, 1156–1160.  https://doi.org/10.1121/1.380573.CrossRefGoogle Scholar
  7. Dowling, W. J. (1973). The perception of interleaved melodies. Cognitive Psychology, 5, 322–337.  https://doi.org/10.1016/0010-0285(73)90040-6.CrossRefGoogle Scholar
  8. Ebeling, M. (2008a). Zum Wesen der Konsonanz. Neuronale Koinzidenz, Verschmelzung und Rauhigkeit. In W. Auhagen (Ed.), Jahrbuch der Deutschen Gesellschaft für Musikpsychologie (Vol. 20, pp. 71–93).Google Scholar
  9. Ebeling, M. (2008b). Neuronal periodicity detection as a basis for the perception of consonance: A mathematical model of tonal fusion. JASA, 124(4), 2320–2329.  https://doi.org/10.1121/1.2968688.CrossRefGoogle Scholar
  10. Fox, C. W. (1948). Modern counterpoint: A phenomenological approach. Notes for the Music Library Association Dec 1, 6, 46–57.  https://doi.org/10.2307/891495.CrossRefGoogle Scholar
  11. Griffiths, T. D., Micheyl, C., & Overath, T. (2012). Auditory object analysis. In D. Poeppel, T. Overath, A. N. Popper, & R. R. Fey (Eds.), The human auditory cortex. Springer: New York.Google Scholar
  12. Lai, H., Xu, M., Sony, Y., & Liu, J. (2013). The neural mechanism underlying music perception: A meta-analysis off MRI studies. Acta Psychologica Sinica, 45(5), 491–507.Google Scholar
  13. Langner, G. (1997). Temporal processing of pitch in the auditory system. Journal of New Music Research, 26, 116–132.  https://doi.org/10.1080/09298219708570721.CrossRefGoogle Scholar
  14. Langner, G. (2015). The Neural code of pitch and harmony. Cambridge: CUP.CrossRefGoogle Scholar
  15. Lee, Y.-S., Janata, P., Frost, C., Martinez, Z., & Granger, R. (2015). Melody recognition revisited: Influence of melodic Gestalt on the encoding of relational pitch information. Psychonomic Bulletin & Review, 22(1), 163–169.  https://doi.org/10.3758/s13423-014-0653-y.CrossRefGoogle Scholar
  16. Mazzola, G. (2002). The Topos of music. Geometric logic of concepts, theory, and performance. Basel: Birkhäuser.Google Scholar
  17. Moore, B. C. J., & Ohgushi, K. (1993). Audibility of partials in inharmonic complex tones. JASA, 93(1), 452–461.  https://doi.org/10.1121/1.405625.CrossRefGoogle Scholar
  18. Moore, B. C. J., Glasbert, B. R., & Shailer, M. J. (1984). Frequency and intensity difference limens for harmonics within complex tones. JASA, 75(2), 550–561.  https://doi.org/10.1121/1.390527.CrossRefGoogle Scholar
  19. Mungan, E., & Kaya, M. U. (2017). Perceiving boundaries in unfamiliar Turkish makam music: Evidence for Gestalt universals? Music Perception, 34(3), 267–290.  https://doi.org/10.1525/mp.2017.34.3.267.CrossRefGoogle Scholar
  20. Ono, Z., Altmann, C. F., Matsuhashi, M., Mima, T., & Fukuyama, H. (2015). Neural correlates of perceptual grouping effects in the processing of sound omission by musicians and nonmusicians. Hearing Research, 319, 25–31.  https://doi.org/10.1016/j.heares.2014.10.013.CrossRefGoogle Scholar
  21. Schneider, P., Sluming, V., Roberts, N., Scherg, M., Goebel, R., Specht, H. J., et al. (2005). Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nature Neuroscience, 8, 1241–1247.  https://doi.org/10.1038/nn1530.CrossRefGoogle Scholar
  22. Slana, A., Repovš, G., Fitch, W. T., & Gingras, B. (2016). Harmonic context influences pitch class equivalence judgments through Gestalt and congruency effects. Acta Psychologica, 166, 54–63.  https://doi.org/10.1016/j.actpsy.2016.03.006.CrossRefGoogle Scholar
  23. Stumpf, C. (1883/1890). Tonpsychologie. Band 1/II. Leipzig: Barth.Google Scholar
  24. Stumpf, C. (1897). Neues zur Tonverschmelzung. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 15, 280–303.Google Scholar
  25. Stumpf, C. (2011). Erkenntnislehre. Barth, Leipzig (1939/1940). Reprint with an introduction by Margret Kaiser-el-Safti. Lengerich: Papst.Google Scholar
  26. Trendelenburg, A. (1963). Geschichte der Kategorienlehre. Hildesheim: Georg Olms Verlagsbuchhandlung.Google Scholar
  27. Tymoczko, D. (2011). A geometry of music. Harmony and counterpoint in the extended common practice. New York: Oxford University Press.Google Scholar
  28. Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt. Psychologische Forschung: Zeitschrift für Psychologie und ihre Grenzwissenschaften 4, 301–350.CrossRefGoogle Scholar
  29. Zimbardo, P. G., & Ruch, F. L. (1978). Lehrbuch der Psychologie. Berlin: Springer, 221/22.Google Scholar
  30. Zwicker, E., & Fastl, H. (1999). Psychoacoustics. Facts and models. Berlin: Springer.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Music and MusicologyTU Dortmund UniversityMönchengladbachGermany
  2. 2.Institute of Music and MusicologyTU Dortmund UniversityDortmundGermany

Personalised recommendations