Advertisement

Continuous Process Monitoring Through Ensemble-Based Anomaly Detection

  • Jochen DeuseEmail author
  • Mario Wiegand
  • Kirsten Weisner
Chapter
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

In many production processes, a complete quality inspection of all products is not feasible due to technological and organizational restrictions. In order to ensure zero-defect products, monitoring process parameters in real time and using them to predict product quality by supervised learning methods is a very established approached. However, this approach requires a joining of process parameters and quality features. In order to guarantee high-quality products even in the absence of traceability, a continuous process monitoring approach based on an anomaly detection ensemble method is beneficial.

Literature

  1. Abbasi, S., Nejatian, S., Parvin, H., Rezaie, V., & Bagherifard, K. (2018). Clustering ensemble selection considering quality and diversity. Artificial Intelligence Review, 1–30.Google Scholar
  2. Aggarwal, C. C. (2012). Outlier ensembles. SIGKDD Explorations, 14(2), 49–58.CrossRefGoogle Scholar
  3. Austina, P. C., Tua, J. V., Hoe, J. E., Levye, D., & Lee, D. S. (2013). Using methods from the data-mining and machine learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes. Journal of Clinical Epidemiology, 66(4), 398–407.CrossRefGoogle Scholar
  4. Banfield, R. E., Hall, L. O., Bowyer, K. W., & Kegelmeyer, W. P. (2005). Ensemble diversity measures and their application to thinning. Information Fusion, 6, 49–62.CrossRefGoogle Scholar
  5. Breiman, L. (1994). Bagging predictors. Technical report no. 421. Department of Statistics, University of California.Google Scholar
  6. Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: Identifying density-based local outliers. In Proceedings of the ACM SIGMOD International Conference on Management of data (pp. 93–104).Google Scholar
  7. Caruana, R., Niculescu-Mizil, A., Crew, G., & Ksikes, A. (2004). Ensemble selection from libraries of models. In Proceedings of the 21st International Conference on Machine Learning.Google Scholar
  8. Chen, Y., & Zhao, Y. (2008). A novel ensemble of classifiers for microarray data classification. Applied Soft Computing, 8, 1664–1669.CrossRefGoogle Scholar
  9. Chen, W. C., Lee, A. H. I., Deng, W. J., & Liu, K. Y. (2007). The implementation of neural network for semiconductor PECVD process. Expert Systems with Applications, 32(4), 1148–1153.CrossRefGoogle Scholar
  10. Deuse, J., Schmitt, J., Stolpe, M., Wiegand, M., & Morik, K. (2017). Qualitätsprognosen zur Engpassentlastung in der Injektorfertigung unter Einsatz von Data Mining. In N. Gronau (Eds.), Industrial Internet of Things in der Arbeits- und Betriebsorganisation. Wissenschaftliche Gesellschaft für Arbeits- und Betriebsorganisation (WGAB) (pp. 47–60).Google Scholar
  11. Domingos, P. (1999). MetaCost: A general method for making classifiers cost-sensitive. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 155–164).Google Scholar
  12. Dörmann, O., Hans W., Linß, G., Weckenmann, A., & Bettin, V. (2009). Ansatz für ein prozessintegriertes Qualitätsregelungssystem für nicht stabile Prozesse. Ilmenau.Google Scholar
  13. Gani, W., & Limam, M. (2013). Performance evaluation of one-class classification-based control charts through an industrial application. Journal of Quality and Reliability Engineering International, 29, 841–854.CrossRefGoogle Scholar
  14. Gani, W., & Limam, M. (2014). A one-class classification-based control chart using the K-means data description algorithm. Journal of Quality and Reliability Engineering, 39(3), 461–474.Google Scholar
  15. Goldstein, M., & Uchida, S. (2016). A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLoS ONE, 11(4).Google Scholar
  16. Guessasma, S., Salhi, Z., Montavon, G., Gougeon, P., & Coddet, C. (2004). Artificial intelligence implementation in the APS process diagnostic. Materials of Science and Engineering: B, 110(3), 285–295.CrossRefGoogle Scholar
  17. Hawkins, D. M. (1980). Identification of outliers. London: Springer.CrossRefGoogle Scholar
  18. He, Z., Xu, X., & Deng, S. (2003). Discovering cluster-based local outliers. Pattern Recognition Letters, 24, 1641–1650.CrossRefGoogle Scholar
  19. Kaneko, H., & Funatsu, K. (2013). Adaptive soft sensor model using online support vector regression with time variable and discussion of appropriate parameter settings. Procedia Computer Science, 22, 580–589.CrossRefGoogle Scholar
  20. Kim, Y., & Kim, S. B. (2018). Optimal false alarm controlled support vector data description for multivariate process monitoring. Journal of Process Control, 65, 1–14.CrossRefGoogle Scholar
  21. Kriegel, H.-P., Kröger, P., Schubert, E., & Zimek, A. (2009). LoOP: Local outlier probabilities. In Proceedings of the 18th ACM Conference on Information and Knowledge Management (pp. 1649–1652).Google Scholar
  22. Kumar, S., Choudhary, A. K., Kumar, M., Shankar, R., & Tiwari, M. K. (2006). Kernel distance-based robust support vector methods and its application in developing a robust K-chart. International Journal of Production Research, 44(1), 77–96.CrossRefGoogle Scholar
  23. Liu, X., Xie, L., Kruger, U., Littler, T., & Wang, S. (2008). Statistical-based monitoring of multivariate non-Gaussian systems. AIChE Journal, 54(9), 2379–2391.CrossRefGoogle Scholar
  24. Liu, Y., Pan, Y., Wang, Q., & Huang, D. (2015). Statistical process monitoring with integration of data projection and one-class classification. Chemometrics and Intelligent Laboratory Systems, 149, 1–11.CrossRefGoogle Scholar
  25. Ozcelik, B., & Erzurumlu, T. (2006). Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm. Journal of Materials Processing Technology, 171(3), 437–445.CrossRefGoogle Scholar
  26. Ramaswamy, S., Rastogi, R., & Shim, K. (2000). Efficient algorithms for mining outliers from large data sets. In Proceedings of the ACM SIGMOD International Conference on Management of Data (pp. 427–438).Google Scholar
  27. Shen, C., Wang, L., & Li, Q. (2007). Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method. International Journal of Materials Processing Technology, 183(2–3), 412–418.CrossRefGoogle Scholar
  28. Shi, X., Schillings, P., & Boyd, D. (2004). Applying artificial neural networks and virtual experimental design to quality improvement of two industrial processes. International Journal of Production Research, 42(1), 101–118.CrossRefGoogle Scholar
  29. Soares, S. G., & Araújo, R. (2015). A dynamic and on-line ensemble regression for changing environments. Expert Systems with Applications, 42, 2935–2948.CrossRefGoogle Scholar
  30. Sun, R., & Tsung, F. (2003). A kernel-distance-based multivariate control chart using support vector methods. International Journal of Production Research, 41(13), 2975–2989.CrossRefGoogle Scholar
  31. Sung, B. S., Kim, I. S., Xue, Y., Kim, H. H., & Cha, Y. H. (2007). Fuzzy regression model to predict the bead geometry in the robotic welding process. Acta Metallurgica Sinica (English Letters), 20(6), 391–397.CrossRefGoogle Scholar
  32. Vega-Pons, S., & Ruiz-Shulcloper, J. (2011). International Journal of Pattern Recognition and Artificial Intelligence, 25(3), 337–372.Google Scholar
  33. Weihs, C., & Szepannek, G. (2009). Distances in classification. In ICDM 2009: Advances in data mining. Applications and theoretical aspects (pp. 1–12).Google Scholar
  34. Yang, T., Tsai, T., & Yeh, J. (2005). A neural network-based prediction model for fine pitch stencil printing quality in surface mount assembly. Engineering Applications of Artificial Intelligence, 18(3), 335–341.CrossRefGoogle Scholar
  35. Yao, L., & Ge, Z. (2017). Moving window adaptive soft sensor for state shifting process based on weighted supervised latent factor analysis. Control Engineering Practice, 61, 72–80.CrossRefGoogle Scholar
  36. Zimek, A., Campello, R. J. G. B., & Sander, J. (2014). Ensembles for unsupervised outlier detection: Challenges and research questions. SIGKDD Explorations, 15(1), 15–22.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fakultät MaschinenbauTechnische Universität DortmundDortmundGermany

Personalised recommendations