Advertisement

Optimal Semi-Split-Plot Designs with R

  • Sebastian HoffmeisterEmail author
  • Andrea Geistanger
Chapter
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

This paper introduces Semi-Split-Plot designs. They are a new class of experimental designs and support factors where only a reduced number of factor settings can be applied inside of one block. An algorithm to generate optimal Semi-Split-Plot designs is presented. A tutorial for the R package rospd that implements the algorithm is given. Semi-Split-Plot designs are compared to completely randomized and Split-Plot designs in terms of balance, aliasing and predictive quality.

References

  1. Fisher, R. A. (1992). Statistical methods for research workers (pp. 66–70). New York: Springer.  https://doi.org/10.1007/978-1-4612-4380-9_6.Google Scholar
  2. Hooks, T., Marx, D., Kachman, S., & Pedersen, J. (2009). Optimality criteria for models with random effects. Revista Colombiana de Estadistica32, 17 – 31. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-17512009000100002&nrm=iso.
  3. Jones, B., & Goos, P. (2007). A candidate-set-free algorithm for generating d-optimal split-plot designs. Journal of the Royal Statistical Society: Series C (Applied Statistics), 56(3), 347–364.  https://doi.org/10.1111/j.1467-9876.2007.00581.x..MathSciNetCrossRefGoogle Scholar
  4. Jones, B., & Goos, P. (2011). Optimal design of experiments (pp. 277–282). Wiley-Blackwell.  https://doi.org/10.1002/9781119974017.biblio,  https://doi.org/10.1002/9781119974017.biblio.
  5. Jones, B., & Goos, P. (2012). I-optimal versus D-optimal split-plot response surface designs. Working Papers 2012002, University of Antwerp, Faculty of Applied Economics. https://ideas.repec.org/p/ant/wpaper/2012002.html.
  6. Jones, B., & Nachtsheim, C. J. (2009). Split-plot designs: What, why, and how. Journal of Quality Technology, 41(4), 340–361.  https://doi.org/10.1080/00224065.2009.11917790.CrossRefGoogle Scholar
  7. Kowalski, S. M., & Potcner, K. J. (2003). How to recognize a split-plot experiment. https://onlinecourses.science.psu.edu/stat503/sites/onlinecourses.science.psu.edu.stat503/files/lesson14/recognize_split_plot_experiment/index.pdf. Accessed July 29 2018.
  8. Meyer, R. K., & Nachtsheim, C. J. (1995). The coordinate-exchange algorithm for constructing exact optimal experimental designs. Technometrics37(1), 60–69. http://www.jstor.org/stable/1269153.
  9. Miller, A.J., & Nam-Ky, N.: A fedorov exchange algorithm for d-optimal design. Journal of the Royal Statistical Society: Series C (Applied Statistics) 43(4), 669 (1994). http://search.ebscohost.com/login.aspx?direct=true&db=plh&AN=6119956&site=ehost-live&authtype=sso&custid=s87180.
  10. Morgan-Wall, T., & Khoury, G. (2018). skpr: Design of experiments suite: Generate and evaluate optimal designs. https://CRAN.R-project.org/package=skpr. R package version 0.49.1.
  11. Næs, T., & Aastveit, A., & Sahni, N. (2007). Analysis of split-plot designs: An overview and comparison of methods. 23, 801–820.Google Scholar
  12. R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
  13. SAS. (2018). Split plot designs with different numbers of whole plots. https://www.jmp.com/support/help/14/split-plot-designs-with-different-numbers-of-who.shtml. Accessed July 25 2018.
  14. Schoonees, P., le Roux, N., & Coetzer, R. (2016). Flexible graphical assessment of experimental designs in R: The vdg package. Journal of Statistical Software74(3), 1–22.  https://doi.org/10.18637/jss.v074.i03.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Roche Diagnostics GmbHPenzbergGermany

Personalised recommendations