Advertisement

Recent Advances on Univariate Distribution-Free Shewhart-Type Control Charts

  • Markos V. Koutras
  • Ioannis S. TriantafyllouEmail author
Chapter

Abstract

In this chapter, we provide an up-to-date overview of nonparametric Shewhart-type univariate control charts. The monitoring schemes incorporated in the present literature review depict the most recent developments on the topic, since it has been chosen to discuss only the advances appeared during the last decade. For each distribution-free control chart, the general setup and several performance characteristics are presented in some detail.

Keywords

Nonparametric statistical process monitoring Shewhart-type control charts Run length distribution Order statistics Sign statistic Wilcoxon-type statistics Rank-based statistics 

References

  1. Abbasi, B., & Guillen, M. (2013). Bootstrap control charts in monitoring value at risk in insurance. Expert Systems with Applications, 40, 6125–6135.CrossRefGoogle Scholar
  2. Alloway, J. A., & Raghavachari, M. (1991). Control chart based on the Hodges-Lehmann estimator. Journal of Quality Technology, 23, 336–347.CrossRefGoogle Scholar
  3. Altukife, F. S. (2003). Nonparametric control chart based on sum of ranks. Pakistan Journal of Statistics, 19, 156–172.MathSciNetzbMATHGoogle Scholar
  4. Amin, R. W., & Widmaier, Ο. (1999). Sign control charts with variable sampling intervals. Communication in Statistics: Theory and Methods, 28, 1961–1985.CrossRefzbMATHGoogle Scholar
  5. Amin, R. W., Reynolds, M. R., Jr., & Bakir, S. T. (1995). Nonparametric quality control charts based on the sign statistic. Communication in Statistics: Theory and Methods, 24, 1597–1623.CrossRefMathSciNetzbMATHGoogle Scholar
  6. Antzoulakos, D. L., & Rakitzis, A. C. (2008). The revised m-of-k runs rule. Quality Engineering, 20, 75–81.CrossRefGoogle Scholar
  7. Asghari, S., Gildeh, B. S., Ahmadi, J., & Borzadaran, G. M. (2018). Sign control chart based on ranked set sampling. Quality Technology & Quantitative Management, 15, 568–588.CrossRefGoogle Scholar
  8. Bakir, S. T. (2012). A nonparametric Shewhart-type quality control chart for monitoring broad changes in a process distribution. International Journal of Quality, Statistics and Reliability, 2012(Article ID 147520), 10 p.Google Scholar
  9. Balakrishnan, N., & Asgharzadeh, A. (2005). Inference for the scaled half-logistic distribution based on progressively type-II censored samples. Communication in Statistics: Theory & Methods, 34, 73–87.Google Scholar
  10. Balakrishnan, N., & Dembińska, A. (2008). Progressively type-II right censored order statistics from discrete distributions. Journal of Statistical Planning and Inference, 138, 845–856.Google Scholar
  11. Balakrishnan, N., & Han, D. (2007). Optimal progressive type-II censoring schemes for non-parametric confidence intervals of quantiles. Communication in Statistics: Simulation and Computation, 36, 1247–1262.Google Scholar
  12. Balakrishnan, N., & Ng, H. K. T. (2006). Precedence-type tests and applications. Hoboken, NJ: Wiley.CrossRefzbMATHGoogle Scholar
  13. Balakrishnan, N., Triantafyllou, I. S., & Koutras, M. V. (2009). Nonparametric control charts based on runs and Wilcoxon-type rank-sum statistics. Journal of Statistical Planning and Inference, 139, 3177–3192.CrossRefMathSciNetzbMATHGoogle Scholar
  14. Balakrishnan, N., Triantafyllou, I. S., & Koutras, M. V. (2010). A distribution-free control chart based on order statistics. Communication in Statistics—Theory and Methods, 39, 3652–3677.CrossRefMathSciNetzbMATHGoogle Scholar
  15. Balakrishnan, N., Paroissin, C., & Turlot, J. C. (2015). One-sided control charts based on precedence and weighted precedence statistics. Quality Reliability Engineering International, 31, 113–134.CrossRefGoogle Scholar
  16. Barabesi, L. (1998). The computation of the distribution of the sign test statistic for ranked-set sampling. Communication in Statistics—Simulation and Computation, 27, 833–842.CrossRefzbMATHGoogle Scholar
  17. Büning, H., & Thadewald, T. (2000). An adaptive two-sample location-scale test of Lepage type for symmetric distributions. Journal of Statistical Computation and Simulation, 65, 287–310.CrossRefMathSciNetzbMATHGoogle Scholar
  18. Capizzi, G., & Masarotto, G. (2009). Bootstrap-based design of residual control charts. IIE Transactions, 41, 275–286.CrossRefGoogle Scholar
  19. Capizzi, G., & Masarotto, G. (2013). Phase I distribution-free analysis of univariate data. Journal of Quality Technology, 45, 273–284.CrossRefGoogle Scholar
  20. Celano, G., Castagliola, P., Fichera, S., & Trovato, E. (2011). Shewhart and EWMA t charts for short production runs. Quality Reliability Engineering International, 27, 313–236.CrossRefGoogle Scholar
  21. Celano, G., Castagliola, P., & Trovato, E. (2012). The economic performance of a CUSUM t control chart for monitoring short production runs. Quality Technology and Quantitative Management, 9, 329–354.CrossRefGoogle Scholar
  22. Celano, G., Castagliola, P., & Chakraborti, S. (2016a). Joint Shewhart control charts for location and scale monitoring in finite horizon processes. Computers & Industrial Engineering, 101, 427–439. CrossRefGoogle Scholar
  23. Celano, G., Castagliola, P., Chakraborti, S., & Nenes, G. (2016b). The performance of the Shewhart sign control chart for finite horizon processes. International Journal of Advanced Manufacturing Technology, 84, 1497–1512.Google Scholar
  24. Celano, G., Castagliola, P., Chakraborti, S., & Nenes, G. (2016c). On the implementation of the Shewhart sign control chart for low-volume production. International Journal of Production Research, 54, 5866–5900.CrossRefGoogle Scholar
  25. Chakraborti, S. (2000). Run length, average run length and false alarm rate of Shewhart X-bar chart: Exact derivations by conditioning. Communications in Statistics-Simulation and Computation, 29, 61–81.CrossRefzbMATHGoogle Scholar
  26. Chakraborti, S. (2011). Nonparametric (Distribution-free) quality control charts. Encyclopedia of Statistical Sciences, 1–27.Google Scholar
  27. Chakraborti, S., & Eryilmaz, S. (2007). A nonparametric Shewhart-type signed-rank control chart based on runs. Communication in Statistics: Simulation and Computation, 36, 335–356.CrossRefMathSciNetzbMATHGoogle Scholar
  28. Chakraborti, S., & Graham, M. A. (2019b). Nonparametric (distribution-free) control charts: An updated overview and some results. Quality Engineering, 31, 523–544.Google Scholar
  29. Chakraborti, S., & van de Wiel, M. A. (2008). A nonparametric control chart based on the Mann-Whitney statistic. In IMS Collections [Beyond parametrics in interdisciplinary research: Festschrift in Honour of Professor Pranab K. Sen], 1, 156–172.Google Scholar
  30. Chakraborti, S., van der Laan, P., & Bakir, S. T. (2001). Nonparametric control charts: An overview and some results. Journal of Quality Technology, 33, 304–315.CrossRefGoogle Scholar
  31. Chakraborti, S., van der Laan, P., & van de Weil, M. A. (2004). A class of distribution-free control charts. Journal of the Royal Statistical Society, Series C-Applied Statistics, 53, 443–462.CrossRefMathSciNetzbMATHGoogle Scholar
  32. Chakraborti, S., Eryilmaz, S., & Human, S. W. (2009). A phase II nonparametric control chart based on precedence statistics with runs-type signaling rules. Computational Statistics & Data Analysis, 53, 1054–1065.CrossRefMathSciNetzbMATHGoogle Scholar
  33. Chakraborti, S., & Graham, M. A. (2019a). Nonparametric statistical process control. Wiley.Google Scholar
  34. Chatterjee, S., & Qiu, P. (2009). Distribution-free cumulative sum control charts using Bootstrap-based control limits. The Annals of Applied Statistics, 3, 349–369.CrossRefMathSciNetzbMATHGoogle Scholar
  35. Chong, Z. L., Mukherjee, A., & Khoo, M. B. C. (2017). Distribution-free Shewhart-Lepage type premier control schemes for simultaneous monitoring of location and scale. Computers & Industrial Engineering, 104, 201–215.CrossRefGoogle Scholar
  36. Chowdhury, S., Mukherjee, A., & Chakraborti, S. (2014). A new distribution-free control chart for joint monitoring of unknown location and scale parameters of continuous distributions. Quality Reliability Engineering International, 30, 191–204.CrossRefGoogle Scholar
  37. Coehlo, M. L. I., Graham, M. A., & Chakraborti, S. (2017). Nonparametric signed-rank control charts with variable sampling intervals. Quality Reliability Engineering International, 33, 2181–2192.CrossRefGoogle Scholar
  38. Conover, W. J. (1999). Practical nonparametric statistics (3rd ed.). New York: Wiley.Google Scholar
  39. Cucconi, O. (1968). Un nuovo test non parametrico per il confronto tra due gruppi campionari (pp. 225–248). XXVII: Giornale degli Economisti.Google Scholar
  40. David, H. A., & Nagaraja, H. N. (2003). Order Statistics (3rd ed.). Hoboken, NJ: Wiley.CrossRefzbMATHGoogle Scholar
  41. Del Castillo, E., & Montgomery, D. C. (1993). Optimal design of control charts for monitoring short production runs. Economic Quality Control, 8, 225–240.zbMATHGoogle Scholar
  42. Del Castillo, E., & Montgomery, D. C. (1996). A general model for the optimal economic design of \(\overline{X}\) charts used to control short or long run processes. IIE Transactions, 28, 193–201.Google Scholar
  43. Derman, C., & Ross, S. M. (1997). Statistical Aspects of Quality Control. San Diego: Academic Press.zbMATHGoogle Scholar
  44. Duncan, A. J. (1956). The economic design of X charts used to maintain current control of a process. Journal of American Statistical Association, 51, 228–242.zbMATHGoogle Scholar
  45. Figueiredo, F., & Gomes, M. I. (2016). The total median statistic to monitor contaminated normal data. Quality Technology & Quantitative Management, 13, 78–87.CrossRefGoogle Scholar
  46. Fligner, M. A., & Wolfe, D. A. (1976). Some applications of sample analogues to the probability integral transformation and a coverage property. The American Statistician, 30, 78–85.MathSciNetzbMATHGoogle Scholar
  47. Fu, J. C., & Lou, W. Y. W. (2003). Distribution theory of runs and patterns and its applications: A finite markov chain imbedding approach. Singapore: World Scientific Publishing.CrossRefzbMATHGoogle Scholar
  48. Gastwirth, J. L. (1965). Percentile modifications of two-sample rank tests. Journal of the American Statistical Association, 60, 1127–1141.CrossRefMathSciNetzbMATHGoogle Scholar
  49. Gibbons, J. D., & Chakraborti, S. (2010). Nonparametric statistical inference (5th ed.). Boca Raton: Taylor & Francis.CrossRefzbMATHGoogle Scholar
  50. Graham, M., Human, S. W., & Chakraborti, S. (2010). A phase I nonparametric Shewhart-type control chart based on the median. Journal of Applied Statistics, 37, 1795–1813.CrossRefMathSciNetGoogle Scholar
  51. Hettmansperger, T. P. (1995). The ranked-set sample sign test. Journal of Nonparametric Statistics, 4, 263–270.CrossRefMathSciNetzbMATHGoogle Scholar
  52. Hogg, R. V., Fisher, D. M., & Randles, R. H. (1975). A two-sample adaptive distribution-free test. Journal of the American Statistical Association, 70, 656–661.zbMATHGoogle Scholar
  53. Human, S. W., Chakraborti, S., & Smit, C. F. (2010). Nonparametric Shewhart-type sign control charts based on runs. Communication in Statistics—Theory and Methods, 39, 2046–2062.CrossRefMathSciNetzbMATHGoogle Scholar
  54. Janacek, G. J., & Meikle, S. E. (1997). Control charts based on medians. The Statistician, 46, 19–31.Google Scholar
  55. Jarett, R. G. (1979). A note on the intervals between coal-mining disasters. Biometrika, 66, 191–193.CrossRefGoogle Scholar
  56. Jensen, J. L. (1995). Saddlepoint approximations. New York: Oxford University Press.zbMATHGoogle Scholar
  57. Jones-Farmer, L. A., Jordan, V., & Champ, C. W. (2009). Distribution-free phase I control charts for subgroup location. Journal of Quality Technology, 41, 304–316.CrossRefGoogle Scholar
  58. Khilare, S. K., & Shirke, D. T. (2010). A nonparametric synthetic control chart using sign statistic. Communication in Statistics—Theory and Methods, 39, 3282–3293.CrossRefMathSciNetzbMATHGoogle Scholar
  59. Khilare, S. K., & Shirke, D. T. (2012). Nonparametric synthetic control charts for process variation. Quality Reliability Engineering International, 28, 193–202.CrossRefGoogle Scholar
  60. Khoo, M. B. C., & Ariffin, K. N. (2006). Two improved runs rules for Shewhart \(\overline{X}\) control chart. Quality Engineering, 18, 173–178.Google Scholar
  61. Klein, M. (2000). Two alternatives to the Shewhart \(\overline{X}\) control chart. Journal of Quality Technology, 32, 427–431.Google Scholar
  62. Kossler, W. (2006). Asymptotic power and efficiency of lepage-type tests for the treatment of combined location-scale alternatives (Informatik-bericht nr. 200). Humboldt: Universitat zu Berlin.Google Scholar
  63. Kössler, W. (2010). Max-type rank tests, U-tests and adaptive tests for the two-sample location problem—An asymptotic power study. Computational Statistics & Data Analysis, 54, 2053–2065.CrossRefMathSciNetzbMATHGoogle Scholar
  64. Koti, K. M., & Jogeph Babu, G. (1996). Sign test for ranked-set sampling. Communication in Statistics—Theory and Methods, 25, 1617–1630.CrossRefMathSciNetzbMATHGoogle Scholar
  65. Koutras, M. V., & Triantafyllou, I. S. (2018). A general class of nonparametric control charts. Quality Reliability Engineering International, 34, 427–435.CrossRefGoogle Scholar
  66. Kritzinger, P., Human, S. W., & Chakraborti, S. (2014). Improved Shewhart-type runs-rules nonparametric sign charts. Communication in Statistics—Theory and Methods, 43, 4723–4748.CrossRefMathSciNetzbMATHGoogle Scholar
  67. Ladany, S. P. (1973). Optimal use of control charts for controlling current production. Management Science, 19, 763–772.CrossRefGoogle Scholar
  68. Lehmann, E. L. (1953). The power of rank tests. Annals of Mathematical Statistics, 24, 23–43.CrossRefMathSciNetzbMATHGoogle Scholar
  69. Lepage, Y. (1971). A combination of Wilcoxon’s and Ansari-Bradley’s statistics. Biometrika, 58, 213–217.CrossRefMathSciNetzbMATHGoogle Scholar
  70. Li, S.-Y., Tang, L.-C., & Ng, S.-H. (2010). Nonparametric CUSUM and EWMA control charts for detecting mean shifts. Journal of Quality Technology, 42, 209–226.CrossRefGoogle Scholar
  71. Li, C., Mukherjee, A., Su, Q., & Xie, M. (2016). Optimal design of a distribution-free quality control scheme for cost-efficient monitoring of unknown location. International Journal of Production Research, 54, 7259–7273.CrossRefGoogle Scholar
  72. Li, C., Mukherjee, A., & Su, Q. (2019). A distribution-free phase I monitoring scheme for subgroup location and scale based on the multi-sample Lepage statistic. Computers & Industrial Engineering, 129, 259–273.CrossRefGoogle Scholar
  73. Lorenzen, T. J., & Vance, L. C. (1986). The economic design of control charts: A unified approach. Technometrics, 28, 3–10.CrossRefMathSciNetzbMATHGoogle Scholar
  74. Malela-Majika, J. C., & Rapoo, E. (2016). Distribution-free cumulative sum and exponentially weighted moving average control charts based on the Wilcoxon rank-sum statistic using ranked set sampling for monitoring mean shifts. Journal of Statistical Computation and Simulation, 86, 3715–3734.CrossRefMathSciNetGoogle Scholar
  75. Malela-Majika, J. C., Chakraborti, S., & Graham, M. A. (2016a). Distribution-free control charts with improved runs-rules. Applied Stochastic Models in Business and Industry, 32, 423–439.CrossRefMathSciNetzbMATHGoogle Scholar
  76. Malela-Majika, J. C., Graham, M. A., & Chakraborti, S. (2016b). Distribution-free phase II Mann-Whitney control charts with runs-rules. International Journal of Advanced Manufacturing Technology, 86, 723–735.CrossRefzbMATHGoogle Scholar
  77. Malela-Majika, J. C., Rapoo, E. M., Mukherjee, A., & Graham, M. A. (2019). Distribution-free precedence schemes with a generalized runs-rule for monitoring unknown location. Communications on Statistics—Theory and Methods.  https://doi.org/10.1080/03610926.2019.1612914.CrossRefGoogle Scholar
  78. Mann, N. R. (1971). Best linear invariant estimation for Weibull parameters under progressive censoring. Technometrics, 13, 521–533.Google Scholar
  79. Marozzi, M. (2009). Some notes on the location-scale Cucconi test. Journal of Nonparametric Statistics, 21, 629–647.CrossRefMathSciNetzbMATHGoogle Scholar
  80. McCracken, A. K., & Chakraborti, S. (2013). Control charts for joint monitoring of mean and variance: An overview. Quality Technology & Quantitative Management, 10, 17–36.CrossRefGoogle Scholar
  81. McCracken, A. K., Chakraborti, S., & Mukherjee, A. (2013). Control charts for simultaneous monitoring of unknown mean and variance of normally distributed processes. Journal of Quality Technology, 45, 360–376.CrossRefGoogle Scholar
  82. McIntyre, G. (1952). A method for unbiased selective sampling using ranked sets. Crop and Pasture Science, 3, 385–390.CrossRefGoogle Scholar
  83. Montgomery, D. C. (2009). Introduction to statistical quality control (6th ed.). New York: Wiley.zbMATHGoogle Scholar
  84. Mood, A. M. (1954). On the asymptotic efficiency of certain nonparametric two-sample tests. Annals of Mathematical Statistics, 25, 514–522.CrossRefMathSciNetzbMATHGoogle Scholar
  85. Mukherjee, A., & Chakraborti, S. (2012). A distribution-free control chart for the joint monitoring of location and scale. Quality Reliability Engineering International, 28, 335–352.CrossRefGoogle Scholar
  86. Mukherjee, A., & Marozzi, M. (2017). Distribution-free Lepage type circular-grid charts for joint monitoring of location and scale parameters of a process. Quality Reliability Engineering International, 33, 241–274.CrossRefGoogle Scholar
  87. Mukherjee, A., & Sen, R. (2015). Comparisons of Shewhart-type rank based control charts for monitoring location parameters of univariate processes. International Journal of Production Research, 53, 4414–4445.CrossRefGoogle Scholar
  88. Mukherjee, A., & Sen, R. (2018). Optimal design of Shewhart-Lepage type schemes and its application in monitoring service quality. European Journal of Operational Research, 266, 147–167.CrossRefMathSciNetzbMATHGoogle Scholar
  89. Murakami, H. (2007). Lepage type statistic based on the modified Baumgartner statistic. Computational Statistics & Data Analysis, 51, 5061–5067.CrossRefMathSciNetzbMATHGoogle Scholar
  90. Murakami, H., & Matsuki, T. (2010). A nonparametric control chart based on the mood statistic for dispersion. International Journal of Advanced Manufacturing Technology, 49, 757–763.CrossRefGoogle Scholar
  91. Nelson, W. (1982). Applied life data analysis. New York: Wiley.CrossRefzbMATHGoogle Scholar
  92. Nenes, G., & Tagaras, G. (2010). Evaluation of CUSUM charts for finite-horizon processes. Communication in Statistics: Simulation and Computation, 39, 578–597.CrossRefMathSciNetzbMATHGoogle Scholar
  93. Neuhäuser, M. (2011). Nonparametric statistical tests: A computational approach. CRC Press.Google Scholar
  94. Park, H. (2009). Median control charts based on Bootstrap method. Communications on Statistics—Simulation and Computation, 38, 558–570.CrossRefMathSciNetzbMATHGoogle Scholar
  95. Qiu, P. (2014). Introduction to statistical process control. Boca Raton: CRC Press.Google Scholar
  96. Qiu, P. (2018). Some perspectives on nonparametric statistical process control. Journal of Quality Technology, 50, 49–65.CrossRefGoogle Scholar
  97. Qiu, P. (2019). Some recent studies in statistical process control. In Statistical quality technologies, 3–19.Google Scholar
  98. Rakitzis, A. C., Chakraborti, S., Shongwe, S. C., Graham, M. A., & Khoo, M. B. C. (2019). An overview of synthetic-type control charts: techniques and methodology. Quality and Reliability Engineering International, 35, 2081–2096.Google Scholar
  99. Randles, R. H., & Wolfe, D. A. (1979). Introduction to the theory of nonparametric statistics. New York: Wiley.zbMATHGoogle Scholar
  100. Rublík, F. (2005). The multisample version of the lepage test. Kybernetika, 41, 713–733.MathSciNetzbMATHGoogle Scholar
  101. Sabegh, M. H. Z., Mirzazadeh, A., Salehian, S., & Weber, G. W. (2014). A literature review on the fuzzy control chart; classifications & analysis. International Journal of Supply and Operations Management, 1, 167–189.Google Scholar
  102. Su, N. C., Chiang, J. Y., Chen, S. C., Tsai, T. R., & Shyr, Y. (2014). Economic design of two-stage control charts with Skewed and dependent measurements. The International Journal of Advanced Manufacturing Technology, 73, 1387–1397.CrossRefGoogle Scholar
  103. Tagaras, G. (1996). Dynamic control charts for finite production runs. European Journal of Operational Research, 91, 38–55.Google Scholar
  104. Tamura, R. (1963). On a modification of certain rank tests. Annals of Mathematical Statistics, 34, 1101–1103.CrossRefMathSciNetzbMATHGoogle Scholar
  105. Thomas, D. R., & Wilson, W. M. (1972). Linear order statistic estimation for the two-parameter Weibull and extreme value distributions from type-II progressively censored samples. Technometrics, 14, 679–691.Google Scholar
  106. Triantafyllou, I. S. (2018a). Nonparametric control charts based on order statistics: Some advances. Communication in Statistics: Simulation and Computation, 47, 2684–2702.CrossRefMathSciNetGoogle Scholar
  107. Triantafyllou, I. S. (2018b). A new distribution-free reliability monitoring scheme: Advances and applications in engineering. In Modeling and Simulation Based Analysis in Reliability Engineering (pp. 199–213).Google Scholar
  108. Triantafyllou, I. S. (2019a). A new distribution-free control scheme based on order statistics. Journal of Nonparametric Statistics, 31, 1–30.CrossRefMathSciNetzbMATHGoogle Scholar
  109. Triantafyllou, I. S. (2019b). Wilcoxon-type rank-sum control charts based on progressively censored reference data. Communication in Statistics: Theory and Methods.  https://doi.org/10.1080/03610926.2019.1634816.
  110. Viveros, R., & Balakrishnan, N. (1994). Interval estimation of life characteristics from progressively censored data. Technometrics, 36, 84–91.Google Scholar
  111. Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80–83.CrossRefMathSciNetGoogle Scholar
  112. Wood, A. T. A., Booth, J. G., & Butler, R. W. (1993). Saddlepoint approximations to the CDF of some statistics with non-normal limit distributions. Journal of the American Statistical Association, 88, 680–686.CrossRefMathSciNetzbMATHGoogle Scholar
  113. Xie, M., Goh, T. N., & Ranjan, P. (2002). Some effective control chart procedures for reliability monitoring. Reliability Engineering and System Safety, 77, 143–150.CrossRefGoogle Scholar
  114. Yadav, A. S., Singh, S. K., & Singh, U. (2018). Estimation of stress–strength reliability for inverse Weibull distribution under progressive type-II censoring scheme.Journal of Industrial and Production Engineering, 35, 48–55.Google Scholar
  115. Yeh, L. L., Wang, F., Li, C., & Yeh, Y. M. (2011). An extension of economic design of X-bar control charts for non-normally distributed data under Weibull shock models. Communications in Statistics—Theory and Methods, 40, 3879–3902.CrossRefMathSciNetzbMATHGoogle Scholar
  116. Zhang, P., Su, Q., Li, C., & Wang, T. (2014). An economically designed sequential probability ratio test control chart for short-run production. Computers & Industrial Engineering, 78, 74–83.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Statistics and Insurance ScienceUniversity of PiraeusPiraeusGreece
  2. 2.Department of Computer Science and Biomedical InformaticsUniversity of ThessalyVolosGreece

Personalised recommendations