Advertisement

Estimating the Parameters of the Waxman Random Graph

  • Matthew RoughanEmail author
  • Jonathan Tuke
  • Eric Parsonage
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11631)

Abstract

The Waxman random graph is useful for modelling physical networks where the increased cost of longer links means they are less likely to be built, and thus less numerous. The model has been in continuous use for over three decades with many attempts to match parameters to real networks, but only a few cases where a formal estimator was used. Even then the performance of the estimator was not evaluated. This paper presents both the first evaluation of formal estimators for these graphs, and a new Maximum Likelihood Estimator with O(e) computational complexity where e is the number of edges in the graph, and requiring only link lengths as input, as compared to all other algorithms which are \(\varOmega (n^2)\).

Notes

Acknowledgements

We would like to thank Lakhina et al. for providing the Internet dataset.

References

  1. 1.
    Waxman, B.: Routing of multipoint connections. IEEE J. Select. Areas Commun. 6(9), 1617–1622 (1988)CrossRefGoogle Scholar
  2. 2.
    Gilbert, E.: Random graphs. Ann. Math. Stat. 30, 1141–1144 (1959)CrossRefGoogle Scholar
  3. 3.
    Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Fosdick, B.K., Hoff, P.D.: Testing and modeling dependencies between a network and nodal attributes. ArXiv e-prints (2013). http://arxiv.org/abs/1306.4708
  5. 5.
    Roughan, M., Tuke, J., Parsonage, E.: Estimating the parameters of the Waxman random graph. ArXiv e-prints (2015). http://arxiv.org/abs/1506.07974
  6. 6.
    Zegura, E.W., Calvert, K., Bhattacharjee, S.: How to model an internetwork. In: IEEE INFOCOM, CA, San Francisco, pp. 594–602 (1996)Google Scholar
  7. 7.
    Salama, H.F., Reeves, D.S., Viniotis, Y.: Evaluation of multicast routing algorithms for real-time communication on high-speed networks. IEEE J. Sel. Areas Commun. 15, 332–345 (1997)CrossRefGoogle Scholar
  8. 8.
    Verma, S., Pankaj, R.K., Leon-Garcia, A.: QoS based multicast routing algorithms for real time applications. Perform. Eval. 34, 273–294 (1998)CrossRefGoogle Scholar
  9. 9.
    Shaikh, A., Rexford, J., Shin, K.G.: Load-sensitive routing of long-lived IP flows. In: ACM SIGCOMM (1999)CrossRefGoogle Scholar
  10. 10.
    Neve, H.D., Mieghem, P.V.: TAMCRA: a tunable accuracy multiple constraints routing algorithm. Comput. Netw. 23, 667–679 (2000)Google Scholar
  11. 11.
    Wu, J.-J., Hwang, R.-H., Lu, H.-I.: Multicast routing with multiple QoS constraints in ATM networks. Inf. Sci. 124(1–4), 29–57 (2000). http://www.sciencedirect.com/science/article/pii/S0020025599001024CrossRefGoogle Scholar
  12. 12.
    Guo, L., Matta, I.: Search space reduction in QoS routing. Comput. Netw. 41, 73–88 (2003)CrossRefGoogle Scholar
  13. 13.
    Gunduz, C., Yener, B., Gultekin, S.H.: The cell graphs of cancer. Bioinformatics 20(1), 145–151 (2004)CrossRefGoogle Scholar
  14. 14.
    Carzaniga, A., Rutherford, M.J., Wolf, A.L.: A routing scheme for content-based networking. In: IEEE INFOCOM (2004)Google Scholar
  15. 15.
    Holzer, M., Schulz, F., Wagner, D., Willhalm, T.: Combining speed-up techniques for shortest-path computations. J. Exp. Algorithmics 10, 2–5 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Malladi, S., Prasad, S., Navathe, S.: Improving secure communication policy agreements by building coalitions. In: IEEE Parallel and Distributed Processing Symposium, pp. 1–8, March 2007Google Scholar
  17. 17.
    Tran, D.A., Pham, C.: PUB-2-SUB: a content-based publish/subscribe framework for cooperative P2P networks. In: Fratta, L., Schulzrinne, H., Takahashi, Y., Spaniol, O. (eds.) NETWORKING 2009. LNCS, vol. 5550, pp. 770–781. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01399-7_60CrossRefGoogle Scholar
  18. 18.
    Fang, Y., Chu, F., Mammar, S., Che, A.: Iterative algorithm for lane reservation problem on transportation network. In: 2011 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 305–310, April 2011Google Scholar
  19. 19.
    Davis, S., Abbasi, B., Shah, S., Telfer, S., Begon, M.: Spatial analyses of wildlife contact networks. J. R. Soc. Interface 12(102) (2014). http://rsif.royalsocietypublishing.org/content/12/102/20141004.shortCrossRefGoogle Scholar
  20. 20.
    Zegura, E.W., Calvert, K.L., Donahoo, M.J.: A quantitative comparison of graph-based models for Internet topology. IEEE/ACM Trans. Netw. 5(6), 770–783 (1997)CrossRefGoogle Scholar
  21. 21.
    Van Mieghem, P.: Paths in the simple random graph and the Waxman graph. Probab. Eng. Inf. Sci. 15, 535–555 (2001). http://dl.acm.org/citation.cfm?id=982639.982646MathSciNetzbMATHGoogle Scholar
  22. 22.
    Naldi, M.: Connectivity of Waxman graphs. Comput. Commun. 29, 24–31 (2005)CrossRefGoogle Scholar
  23. 23.
    Snijders, T.A.B., Koskinen, J., Schweinberger, M.: Maximum likelihood estimation for social network dynamics. Ann. Appl. Stat. 4(2), 567–588 (2010).  https://doi.org/10.1214/09-AOAS313MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Frank, O., Strauss, D.: Markov graphs. J. Am. Stat. Assoc. 81(395), 832–842 (1986)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph (p*) models for social networks. Soc. Netw. 29(2), 173–191 (2007). http://www.sciencedirect.com/science/article/pii/S0378873306000372CrossRefGoogle Scholar
  26. 26.
    Lakhina, A., Byers, J.W., Crovella, M., Matta, I.: On the geographic location of Internet resources. In: ACM SIGCOMM Workshop on Internet Measurement (IMW), pp. 249–250. ACM, New York (2002).  https://doi.org/10.1145/637201.637240
  27. 27.
    Kosmidis, K., Havlin, S., Bunde, A.: Structural properties of spatially embedded networks. Europhys. Lett. 82(4) (2008). http://iopscience.iop.org/0295-5075/82/4/48005CrossRefGoogle Scholar
  28. 28.
    Bringmann, K., Keusch, R., Lengler, J.: Geometric inhomogeneous random graphs. ArXiv e-prints, November 2015. https://arxiv.org/abs/1511.00576
  29. 29.
    Deijfen, M., van der Hofstad, R., Hooghiemstra, G.: Scale-free percolation. ArXiv e-prints, March 2011. https://arxiv.org/abs/1103.0208
  30. 30.
    Ghosh, B.: Random distance within a rectangle and between two rectangles. Bull. Calcutta Math. Soc. 43(1), 17–24 (1951)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Rosenberg, E.: The expected length of a random line segment in a rectangle. Oper. Res. Lett. 32(2), 99–102 (2004). http://www.sciencedirect.com/science/article/pii/S0167637703000725MathSciNetCrossRefGoogle Scholar
  32. 32.
    Feller, W.: An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. Wiley, New York (1971)zbMATHGoogle Scholar
  33. 33.
    Casella, G., Berger, R.L.: Statistical Inference, 2nd edn. Thomson Learning, Pacific Grove (2002)zbMATHGoogle Scholar
  34. 34.
    Gorman, J.D., Hero, A.O.: Lower bounds for parametric estimation with constraints. IEEE Trans. Inf. Theory 36(6), 1285–1301 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Matthew Roughan
    • 1
    Email author
  • Jonathan Tuke
    • 1
  • Eric Parsonage
    • 1
  1. 1.ARC Centre of Excellence for Mathematical and Statistical FrontiersUniversity of AdelaideAdelaideAustralia

Personalised recommendations