Advertisement

Is There a Circulation Without a Heart?

  • Branko Furst
Chapter

Abstract

The premise that lower vertebrate embryos not only survive but continue to develop after the removal of their heart speaks against the widely accepted concept that the heart is the primary source of blood movement. This is validated by heart ablation and flow reversal studies where embryo hearts were explanted, turned 180°, and re-implanted. The hearts continued to contract against the direction of blood flow. A further example is the genetic mutants of Mexican salamander larvae which survive up to 2 weeks with morphologically normal, but functionally non-beating hearts. Various avian, mammalian, and zebrafish mutants have been described which collectively demonstrate related phenomena.

Keywords

Heart ablation studies Embryo heart reversal Embryo heart explants Cardiac mutants Mexican salamander Defective cardiac contraction coupling 

References

  1. 1.
    Loeb J. Ueber die Entwicklung von Fischembryonen ohne Kreislauf. Archiv für die gesamte Physiologie des Menschen und der Tiere. 1893;54(10):525–31.CrossRefGoogle Scholar
  2. 2.
    Knower HME. Effects of early removal of the heart and arrest of the circulation on the development of frog embryos. Anat Rec. 1907;1(7):161–5.CrossRefGoogle Scholar
  3. 3.
    Stöhr P. Über das Embryonale Herz. J Mol Med. 1925;4(21):1004–6.Google Scholar
  4. 4.
    Kemp NE. Morphogenesis and metabolism of amphibian larvae after excision of heart. I. Morphogenesis of heartless tadpoles of rana pipiens. Anat Rec. 1953;117(3):405–25.CrossRefGoogle Scholar
  5. 5.
    Kemp NE, Quinn BL. Morphogenesis and metabolism of amphibian larvae after excision of heart II. Morphogenesis of heartless larvae of amblystoma punctatum. Anat Rec. 1954;118(4):773–87.CrossRefGoogle Scholar
  6. 6.
    Humphrey R. Genetic and experimental studies on a mutant gene (c) determining absence of heart action in embryos of the Mexican axolotl (Ambystoma mexicanum). Dev Biol. 1972;27(3):365–75.CrossRefGoogle Scholar
  7. 7.
    Mellish J, Pinder A, Smith S. You’ve got to have heart… or do you? Axolotl Newsletter. vol. 23; 1994. pp. 34–38.Google Scholar
  8. 8.
    Fishman MC, Chien KR. Fashioning the vertebrate heart: earliest embryonic decisions. Development. 1997;124(11):2099.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Chen JN, et al. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development. 1996;123(1):293.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Warren KS, et al. The genetic basis of cardiac function: dissection by zebrafish (Danio rerio) screens. Philos Trans R Soc Lond B Biol Sci. 2000;355(1399):939.CrossRefGoogle Scholar
  11. 11.
    Koushik SV, et al. Targeted inactivation of the sodium-calcium exchanger (Ncx1) results in the lack of a heartbeat and abnormal myofibrillar organization. FASEB J. 2001;15(7):1209.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Branko Furst
    • 1
  1. 1.Professor of AnesthesiologyAlbany Medical CollegeAlbanyUSA

Personalised recommendations