Heartbeat and Respiration: Toward a Functional Chronobiology

  • Branko Furst


The search for the underlying lawfulness between respiration and heart rate variability has a long history and continues to be at the center of scientific inquiry. Because respiration is partially under conscious control, quantification of its effect on HR presents significant methodological limitations. The discovery of non-equilibrium processes in medicine and biology paved the way toward an expanded view of homeostasis based on nonlinear dynamics. Pulse and respiration are examples of a periodic, nonlinear behavior, exhibiting phase and frequency synchronization at whole number ratios, best demonstrated during periods of rest and the regenerative phase of sleep. The combined concepts of open systems and self-organization offer the possibility of understanding the organism as a spatial structure with life processes, i.e., nourishment, breathing, circulation, growth, regeneration, reproduction, and sense perception, proceeding in time. Life processes are closely linked to external (macrocosmic) rhythms in plants but become entrained and/or internalized in animals and humans. Their synchronization enables the emergence of a higher-level organization that is far-from-thermodynamic equilibrium. The spectrum of human biological rhythms spans several orders of magnitude, from high frequencies in the nervous system to intermediate, as extant in pulse and respiration, and to low-range frequencies in the metabolic system. The cardiovascular system entrains macrocosmic (external) and microcosmic (internal) rhythms by means of transcriptional and non-transcriptional metabolic clocks which persist even in explanted heart preparations and in stored blood. A functional division of the time organism into informational, rhythmical, and metabolic parts provides the bridge between the somatic and psychological functions on the one hand, and between the outer (macrocosmic) and inner (microcosmic) environments on the other. While metabolic processes that provide energy and sustain the function of the entire organism exhibit inherent anabolic/catabolic rhythms, reflected in fluctuations of core body temperature, the brain-bound consciousness is a catabolic process linked to the day/night cycle.


Heart rate variability Respiratory sinus arrhythmia Chronocardiagram Synchrony of pulse and respiration Open systems Self-organization Dissipative structures Cardiorespiratory phase synchronization Thermodynamic equilibrium Active fluids Time organization Time structures Biological rhythms Microcosmic and macrocosmic rhythms Cardiovascular circadian clocks Spiral waves Linear time Cyclical time Threefold time organism Core body temperature Sleep–wakefulness cycle 


  1. 1.
    Bischof M. Introduction to integrative biophysics. In: Popp F-A, Beloussov L, editors. Integrative biophysics. Dordrecht: Kluver Academic Publishers; 2003. p. 1–115.Google Scholar
  2. 2.
    Billman GE. Heart rate variability—a historical perspective. Front Physiol. 2011;2:86.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Hales S. Statical essays: containing Haemastaticks No. 22, reprinted, History of medicine series, vol. 2. New York: Library of New York Academy of Medicine Hafner Publishing; 1964. p. 1733.Google Scholar
  4. 4.
    Ludwig C. Beitrage zur Kenntniss des Einflusses der Respirationsbewegungen auf den Butlauf im Aortensysteme. Arch Anat Physiol Leipzig. 1847;13:242–302.Google Scholar
  5. 5.
    Einthoven W. Ueber die Form des menschlichen Electrocardiogramms. Pflügers Archiv Eur J Physiol. 1895;60(3):101–23.CrossRefGoogle Scholar
  6. 6.
    Holter NJ. New method for heart studies. Science. 1961;134(3486):1214–20.PubMedCrossRefGoogle Scholar
  7. 7.
    Hildebrandt G, Moser M, Lehofer M. Chronobiologie und Chronomedizin: Biologische Rhythmen; Medizinische Konsequenzen. 1998. Stuttgart: Hippokrates-Verlag.Google Scholar
  8. 8.
    Hildebrandt G, Moog R, Raschke F. Chronobiology & chronomedicine: basic research and applications: P. Lang; 1987.Google Scholar
  9. 9.
    Malik M. Task force of the European society of cardiology and the north American society of pacing and electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–81.CrossRefGoogle Scholar
  10. 10.
    Yasuma F, Hayano J-I. Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest J. 2004;125(2):683–90.CrossRefGoogle Scholar
  11. 11.
    Taylor EW, Jordan D, Coote JH. Central control of the cardiovascular and respiratory systems and their interactions in vertebrates. Physiol Rev. 1999;79(3):855–916.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Nederend I, et al. Postnatal cardiac autonomic nervous control in pediatric congenital heart disease. J Cardiovasc Dev Dis. 2016;3(2):16.PubMedCentralCrossRefGoogle Scholar
  13. 13.
    Moser M, et al. Heart rate variability as a prognostic tool in cardiology. A contribution to the problem from a theoretical point of view. Circulation. 1994;90(2):1078–82.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Moser M, Fruhwirth M, Kenner T. The symphony of life [Chronobiological Investigations]. IEEE Eng Med Biol Mag. 2008;27(1)PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Horn E, Lee S. Electronic evaluations of the fetal heart rate patterns preceding fetal death: further observation. Am J Obster Gynecol. 1995;87:824–6.Google Scholar
  16. 16.
    Kleiger RE, et al. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59(4):256–62.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lin K, et al. Combination of Ewing test, heart rate variability, and heart rate turbulence analysis for early diagnosis of diabetic cardiac autonomic neuropathy. Medicine. 2017;96(45)PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    De Jong MMJ, Randall DC. Heart rate variability analysis in the assessment of autonomic function in heart failure. J Cardiovasc Nurs. 2005;20(3):186–95.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Nenna A, et al. Heart rate variability: a new tool to predict complications in adult cardiac surgery. J Geriatr Cardiol JGC. 2017;14(11):662.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Parati G, et al. Point: counterpoint: cardiovascular variability is/is not an index of autonomic control of circulation. J Appl Physiol. 2006;101(2):676–82.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Taylor J. Point: counterpoint: cardiovascular variability is/is not an index of autonomic control of circulation. J Appl Physiol. 2006;101:676–82.CrossRefGoogle Scholar
  22. 22.
    West BJ. The wisdom of the body; a contemporary view. Front Physiol. 2010;1Google Scholar
  23. 23.
    Bischof M. Chronobiology. In: Popp F-A, Beloussov L, editors. Integrative biophysics. Dordrecht: Kluver Academic Publishers; 2003. p. 44–8.Google Scholar
  24. 24.
    Schäfer C, et al. Heartbeat synchronized with ventilation. Nature. 1998;392(6673):239.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Hildebrandt G. Rhythmical function order and man’s emancipation from the time factor. In: Schaeffer KS, Hildebrandt G, Macbeth N, editors. Basis of an individual physiology. New York: Futura Publishing; 1979. p. 15–43.Google Scholar
  26. 26.
    Moser M, et al. Phase-and frequency coordination of cardiac and respiratory function. Biol Rhythm Res. 1995;26(1):100–11.CrossRefGoogle Scholar
  27. 27.
    Guevara MR, Glass L, Shrier A. Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science. 1981;214(4527):1350–3.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kenner T, Pessenhofer H, Schwaberger G. Method for the analysis of the entrainment between heart rate and ventilation rate. Pflugers Arch. 1976;363(3):263–5.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Rohen JW. The organs of the rhythmic system. In: Functional morphology: the dynamic wholeness of the human organism. Hillsdale, NY: Adonis Press; 2007. p. 165–215.Google Scholar
  30. 30.
    Jerath R, et al. Role of cardiorespiratory synchronization and sleep physiology: effects on membrane potential in the restorative functions of sleep. Sleep Med. 2014;15(3):279–88.PubMedCrossRefGoogle Scholar
  31. 31.
    Näsi T, et al. Spontaneous hemodynamic oscillations during human sleep and sleep stage transitions characterized with near-infrared spectroscopy. PLoS One. 2011;6(10):e25415.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bartsch RP, et al. Phase transitions in physiologic coupling. Proc Natl Acad Sci. 2012;109(26):10181–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Galletly D, Larsen P. Cardioventilatory coupling during anaesthesia. Br J Anaesth. 1997;79(1):35–40.PubMedCrossRefGoogle Scholar
  34. 34.
    Ahn S, Solfest J, Rubchinsky LL. Fine temporal structure of cardiorespiratory synchronization. Am J Phys Heart Circ Phys. 2014;306(5):H755–63.Google Scholar
  35. 35.
    Cabiddu R, et al. Modulation of the sympatho-vagal balance during sleep: frequency domain study of heart rate variability and respiration. Front Physiol. 2012;3:45.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Wu S-D, Lo P-C. Cardiorespiratory phase synchronization during normal rest and inward-attention meditation. Int J Cardiol. 2010;141(3):325–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    von Bonin D, et al. Adaption of cardio-respiratory balance during day-rest compared to deep sleep—an indicator for quality of life? Psychiatry Res. 2014;219(3):638–44.CrossRefGoogle Scholar
  38. 38.
    Bettermann H, et al. Effects of speech therapy with poetry on heart rate rhythmicity and cardiorespiratory coordination. Int J Cardiol. 2002;84(1):77–88.PubMedCrossRefGoogle Scholar
  39. 39.
    Moser M, et al. Why life oscillates–from a topographical towards a functional chronobiology. Cancer Causes Control. 2006;17(4):591–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Krüerke D, et al. Can speech-guided breathing influence cardiovascular regulation and mood perception in hypertensive patients? J Altern Complement Med. 2018;24(3):254–61.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ben-Tal A, Shamailov S, Paton J. Evaluating the physiological significance of respiratory sinus arrhythmia: looking beyond ventilation–perfusion efficiency. J Physiol. 2012;590(8):1989–2008.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Rosslenbroich B. Fluid management in animals. In: On the origin of autonomy: a new look at the major transitions in evolution: Springer Science & Business Media; 2014. p. 111–22.Google Scholar
  43. 43.
    Noble D. Claude Bernard, the first systems biologist, and the future of physiology. Exp Physiol. 2008;93(1):16–26.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Cannon WB. The wisdom of the body. Boston, MA: Norton; 1932.CrossRefGoogle Scholar
  45. 45.
    Von Bertalanffy L. The theory of open systems in physics and biology. Science. 1950;111(2872):23–9.CrossRefGoogle Scholar
  46. 46.
    Goldenfeld N, Woese C. Life is physics: evolution as a collective phenomenon far from equilibrium. Annu Rev Condens Matter Phys. 2011;2(1):375–99.CrossRefGoogle Scholar
  47. 47.
    Pfaendner P, Haupt J. 2015 8/30/2018; Rayleigh-Benard Konvektion.
  48. 48.
    Prigogine I, Stengers I. The three stages of thermodynamics. In: Order out of chaos: man’s new dialogue with nature. New York: Bantam; 1984. p. 131–76.Google Scholar
  49. 49.
    Kellert SH. On the way to dynamic understanding. In: Hull DL, editor. In the wake of chaos: unpredictable order of dynamical systems. Chichago, London: University of Chicago Press; 1993. p. 104–5.CrossRefGoogle Scholar
  50. 50.
    Winfree AT. The prehistory of the Belousov-Zhabotinsky oscillator. J Chem Educ. 1984;61(8):661.CrossRefGoogle Scholar
  51. 51.
    Pertsov AM, et al. Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circ Res. 1993;72(3):631–50.CrossRefGoogle Scholar
  52. 52.
    Winfree AT. Patterns of timing in three dimensional space. In: When time breaks down: the three-dimensional dynamics of electrochemical waves and cardiac arrhythmias. Princeton: Princeton University Press; 1987. p. 189–247.Google Scholar
  53. 53.
    Heusser P. Ontological idealism in biology. In: Anthroposophy and science. Frankfurt am Main: Peter Lang; 2016. p. 99–161.CrossRefGoogle Scholar
  54. 54.
    Wu K-T, et al. Transition from turbulent to coherent flows in confined three-dimensional active fluids. Science. 2017;355(6331):eaal1979.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Morozov A. From chaos to order in active fluids. Science. 2017;355(6331):1262–3.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Dalmau R, Furst B. Continuing the debate: Branko Furst’s alternative model and the role of the heart. Pharm Ther. 2017;42(7):443–5.Google Scholar
  57. 57.
    Wikipedia. Kairos, 2018. 2018.
  58. 58.
    Steiner R. Modern man and his world conception. In: The riddles of philosophy. Great Barrington, MA: SteinerBooks; 2009. p. 401–44.Google Scholar
  59. 59.
    Prigogine I, Stengers I. Conclusions. In: Order out of chaos: man’s new dialogue with nature. New York: Bantam; 1984. p. 291–313.Google Scholar
  60. 60.
    Prigogine I. Epicurus’ dilemma. In: The end of certainty. New York: Free Press; 1997. p. 9–56.Google Scholar
  61. 61.
    Fuchs T. The cyclical time of the body and its relation to linear time. J Conscious Stud. 2018;25(7–8):47–65.Google Scholar
  62. 62.
    Rohen JW. General principles of form. In: Functional morphology: the dynamic wholeness of the human organism: Adonis Press; 2007. p. 14–63.Google Scholar
  63. 63.
    Weger UW, Edelhauser F. The role of the brain during conscious experience: in search of a new metaphor. J Conscious Stud. 2014;21(11–12):111–29.Google Scholar
  64. 64.
    Steiner R. Riddles of the soul. Spring Valley: Mercury Press; 1996.Google Scholar
  65. 65.
    Gillette MU, Sejnowski TJ. Biological clocks coordinately keep life on time. Science. 2005;309(5738):1196–8.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Edery I. Circadian rhythms in a nutshell. Physiol Genomics. 2000;3(2):59–74.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Steiner R. Lecture 6, January 6, 1921. In: Amrine F, editor. Interdisciplinary astronomy. Ann Arbor: Keryx; 2017. p. 64–71.Google Scholar
  68. 68.
    Rivkees SA. Developing circadian rhythmicity in infants. Pediatrics. 2003;112(2):373–81.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Cutler WB. Lunar and menstrual phase locking. Am J Obstet Gynecol. 1980;137(7):834–9.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Rohen JW. Functional morphology: the dynamic wholeness of the human organism: Adonis Press; 2007.Google Scholar
  71. 71.
    Rosslenbroich B. Body cavities. In: On the origin of autonomy: a new look at the major transitions in evolution. New York: Springer Science & Business Media; 2014. p. 92–5.CrossRefGoogle Scholar
  72. 72.
    Scholander P, Hargens AR, Miller SL. Negative pressure in the interstitial fluid of animals. Science. 1968;161(3839):321–8.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Martino TA, Young ME. Influence of the cardiomyocyte circadian clock on cardiac physiology and pathophysiology. J Biol Rhythm. 2015;30(3):183–205.CrossRefGoogle Scholar
  74. 74.
    Bray MS, et al. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Phys Heart Circ Phys. 2008;294(2):H1036–47.Google Scholar
  75. 75.
    Tu BP, McKnight SL. Metabolic cycles as an underlying basis of biological oscillations. Nat Rev Mol Cell Biol. 2006;7(9):696.PubMedCrossRefGoogle Scholar
  76. 76.
    Cho C-S, et al. Irreversible inactivation of glutathione peroxidase 1 and reversible inactivation of peroxiredoxin II by H2O2 in red blood cells. Antioxid Redox Signal. 2010;12(11):1235–46.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    O’Neill JS, Reddy AB. Circadian clocks in human red blood cells. Nature. 2011;469(7331):498.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Aalkjær C, Boedtkjer D, Matchkov V. Vasomotion–what is currently thought? Acta Physiol. 2011;202(3):253–69.CrossRefGoogle Scholar
  79. 79.
    Pradhan R, Chakravarthy V. Informational dynamics of vasomotion in microvascular networks: a review. Acta Physiol. 2011;201(2):193–218.CrossRefGoogle Scholar
  80. 80.
    Rosslenbroich B. The concept of biological autonomy. In: On the origin of autonomy: a new look at the major transitions in evolution: Springer Science & Business Media; 2014. p. 19–40.Google Scholar
  81. 81.
    Hildebrandt G. Zur Physiology des rhythmischen Systems. Beiträge zu einer Erweiterung der Heilkunst. 1986;39(1):8–30.Google Scholar
  82. 82.
    Husemann A. The harmony of the human body, musical principles in human physiology. Edinburgh: Floris Books; 1994.Google Scholar
  83. 83.
    Nummenmaa L, et al. Bodily maps of emotions. Proc Natl Acad Sci. 2014;111(2):646–51.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Verhulst J. Uprightness. In: Developmental dynamics in humans and other primates. Ghent, NY: Adonis Press; 2003. p. 144–99.Google Scholar
  85. 85.
    Bos A, van der Bie G. The anthroposophical view of the human being. In: van der Bie G, editor. Foundations of anthroposophical medicine. Edinburgh: Floris Books; 2005. p. 211–38.Google Scholar
  86. 86.
    Girke M. The concept of the human being. In: Internal medicine, foundations and therapeutic concepts of anthroposophic medicine. Berlin: Salumed Verlag; 2016. p. 7–41.Google Scholar
  87. 87.
    Lack LC, et al. The relationship between insomnia and body temperatures. Sleep Med Rev. 2008;12(4):307–17.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Chellappa SL, Lasauskaite R, Cajochen C. In a heartbeat: light and cardiovascular physiology. Front Neurol. 2017;8:541.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Nadel E. Regulation of body temperature. In: Boron WF, Boulpaep EL, editors. Medical physiology: a cellular and molecular approach. Philadelphia: Saunders; 2003. p. 1231–55.Google Scholar
  91. 91.
    Aschoff J. The circadian rhythm of body temperature as a function of body size. In: A companion to animal physiology; 1982. p. 173–88.Google Scholar
  92. 92.
    Kräuchi K. How is the circadian rhythm of core body temperature regulated? Springer; 2002.Google Scholar
  93. 93.
    Segal SS. Special Circulations in Medical physiology: a cellular and molecular approach. In: Boron WF, Boulpaep EL, editors. . Philadelphia: Saunders; 2003. p. 558–73.Google Scholar
  94. 94.
    Taylor NA, Machado-Moreira CA. Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans. Extrem Physiol Med. 2013;2(1):4.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Rowell LB. Human experimentation: no accurate, quantitative data? J Appl Physiol. 2007;102(3):837–40.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Rowell LB. Cardiovascular adjustments to thermal stress. In: Handbook of physiology. The cardiovascular system. Peripheral circulation and organ blood flow, vol. 2; 1983. p. 967–1023.Google Scholar
  97. 97.
    Aschoff J, Weaver R. Spontanrhythmik des Menschen bei Ausschluss aller Zeitgeber. Naturwissenschaft. 1962;49:337–42.CrossRefGoogle Scholar
  98. 98.
    Aschoff J. Adaptive cycles: their significance for defining environmental hazards. Int J Biometeorol. 1967;11(3):255–78.CrossRefGoogle Scholar
  99. 99.
    Czeisler CA, et al. Human sleep: its duration and organization depend on its circadian phase. Science. 1980;210(4475):1264–7.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Refinetti R, Menaker M. The circadian rhythm of body temperature. Physiol Behav. 1992;51(3):613–37.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Branko Furst
    • 1
  1. 1.Professor of AnesthesiologyAlbany Medical CollegeAlbanyUSA

Personalised recommendations