Advertisement

Models of the Heart

  • Branko Furst
Chapter

Abstract

The complex nature of interaction between the heart and the circulation was well recognized among the early nineteenth-century physiologists, and despite numerous technical challenges associated with “opening of the circuit,” attempts were made to investigate the mechanical behavior of the heart itself. The ideas that led to the development and application of this radical experiment played a key role in the understanding of the mechanical and energetic function of the heart which remains incomplete. Further discussed are: recirculating and non-recirculating isolated heart preparations; Otto Frank’s and Ernest Starling’s isolated heart preparations and original formulation of the “law of the heart”; similarity between the isolated heart preparation and the hydraulic ram as a unique model of heart’s mechanical action; quantification of ventricular pump function by the “three element Windkessel”; the “physiological enigma” of the high myocardial basal metabolic rate and its low mechanical efficiency; length-dependent activation of the cardiac muscle and the reformulation of the “law of the heart” in terms of myocardial energetics; and the conceptual drawbacks of the total artificial hearts and relative success of the ventricular assist and continuous flow devices.

Keywords

Isolated heart preparations Frank-Starling’s law of the heart Hydraulic ram Three element Windkessel model Quantification of ventricular pump Ventricular elastance model Myocardial energetics Length-dependent activation of myocardium External myocardial work Myocardial elastance Ventricular assist devices Continuous flow devices Total artificial heart 

References

  1. 1.
    Zimmer HG. Modifications of the isolated frog heart preparation in Carl Ludwig’s Leipzig Physiological Institute: relevance for cardiovascular research. Can J Cardiol. 2000;16(1):61.PubMedGoogle Scholar
  2. 2.
    Zimmer HG. Otto Frank and the fascination of high-tech cardiac physiology. Clin Cardiol. 2004;27(11):665–6.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Zimmer HG. Johann Nepomuk Czermak and his isolated frog heart. Clin Cardiol. 2005;28(5):257.PubMedCrossRefGoogle Scholar
  4. 4.
    Katz AM. Ernest Henry Starling, his predecessors, and the Law of the Heart. Circulation. 2002;106(23):2986–92.CrossRefGoogle Scholar
  5. 5.
    Frank O. On the dynamics of cardiac muscle (Translated By Chapman CB and Wasserman E). Am Heart J. 1959;58(2):282–317.CrossRefGoogle Scholar
  6. 6.
    Sagawa K. The ventricular pressure-volume diagram revisited. Circ Res. 1978;43(5):677–87.PubMedCrossRefGoogle Scholar
  7. 7.
    Sagawa K, Lie RK, Schaefer J. Translation of Otto Frank’s paper “Die Grundform des Arteriellen Pulses” Zeitschrift fur Biologie 37: 483-526 (1899). J Mol Cell Cardiol. 1990;22(3):253.PubMedCrossRefGoogle Scholar
  8. 8.
    Frank O. Zur Dynamik des Herzmuskels. Z Biol. 1895;32:370–437.Google Scholar
  9. 9.
    De Burgh Daly I. The Second Bayliss-Starling Memorial Lecture. Some aspects of their separate and combined research interests. J Physiol. 1967;191(1):1.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Patterson S, Starling E. On the mechanical factors which determine the output of the ventricles. J Physiol. 1914;48(5):357.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Wiggers CJ. The ciruclation and ciruclation research in perspective. In: Hamilton WF, Dow P, editors. Handbook of physiology. Washington, DC: American Physiological Society; 1962. p. 1–9.Google Scholar
  12. 12.
    Markwalder J, Starling E. On the constancy of the systolic output under varying conditions. J Physiol. 1914;48(4):348–56.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Patterson S, Piper H, Starling E. The regulation of the heart beat. J Physiol. 1914;48(6):465.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Starling EH. The Linacre Lecture on the Law of the Heart. London: Longmans, Green & Co; 1918.Google Scholar
  15. 15.
    Hamilton W. The Lewis A. Connor memorial lecture: the physiology of the cardiac output. Circulation. 1953;8(4):527.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Westerhof N, Stergiopulos N, Noble MI. Snapshots of hemodynamics: an aid for clinical research and graduate education. New York: Springer; 2010.CrossRefGoogle Scholar
  17. 17.
    Elzinga G. “Starling’s Law of the Heart” a historical misinterpretation. Basic Res Cardiol. 1989;84(1):1–4.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Guyton AC. Textbook of medical physiology. Philadelphia: WB Saunders Co; 1956. p. 82.Google Scholar
  19. 19.
    Schmid K. Ueber Herzstoss und Pulskurven. Wien Med Wochenschr. 1892:622.Google Scholar
  20. 20.
    Steiner R. Introducing anthroposophical medicine: lecture of March 22 1920, Dornach, Switzerland. Hudson: Rudolf Steiner Press; 1999. p. 19–33.Google Scholar
  21. 21.
    Havlicek H. Arbeitet das Herz wie eine Druckpumpe oder wie ein Stoßheber. Basic Res Cardiol. 1937;1(1):188–224.CrossRefGoogle Scholar
  22. 22.
    Manteuffel-Szoege L. Energy sources of blood circulation and the mechanical action of the heart. Thorax. 1960;15(1):47.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Manteuffel-Szoege L, Husemann G. Ueber die Bewegung des Blutes: Haemodynamische Untersuchungen. Stuttgart: Verlag Freies Geistesleben; 1977.Google Scholar
  24. 24.
    Alexander W. Branko Furst’s radical alternative: is the heart moved by the blood, rather than vice versa? Pharmacy and Therapeutics. 2017;42(1):33–9.Google Scholar
  25. 25.
    Basfeld M, Mueller EA. The hydraulic ram. Forschung im Ingenieur. 1984;50(5):141–7.CrossRefGoogle Scholar
  26. 26.
    Basfeld M. Der Hydraulische Widder. Naturvorganege als reales Symbol der Menchlichen Herztaetigkeit. Beitraege zu einer Erweiterung der Heilkunst. 1982;35(1):1–22.Google Scholar
  27. 27.
    Sengupta PP, Narula J. RV form and function a piston pump, vortex impeller, or hydraulic ram? JACC Cardiovasc Imaging. 2013;6(5):636–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Carlsson M, et al. Total heart volume variation throughout the cardiac cycle in humans. Am J Physiol Heart Circ Physiol. 2004;287(1):H243–50.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Gauer OH. Volume changes of the left ventricle during blood pooling and exercise in the intact animal. Their effects on left ventricular performance. Physiol Rev. 1955;35(1):143–55.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Suga H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol Heart Circ Physiol. 1979;236(3):H498–505.CrossRefGoogle Scholar
  31. 31.
    Steiner R. Introducing Anthroposophical Medicine: lecture of March 22 1920. Dornach: Rudolf Steiner Press; 1999.Google Scholar
  32. 32.
    Elzinga G, Westerhof N. How to quantify pump function of the heart. The value of variables derived from measurements on isolated muscle. Circ Res. 1979;44(3):303.PubMedCrossRefGoogle Scholar
  33. 33.
    Westerhof N, Elzinga G, Sipkema P. An artificial arterial system for pumping hearts. J Appl Physiol. 1971;31(5):776–81.PubMedCrossRefGoogle Scholar
  34. 34.
    Westerhof N, Lankhaar JW, Westerhof BE. The arterial windkessel. Med Biol Eng Comput. 2009;47(2):131–41.PubMedCrossRefGoogle Scholar
  35. 35.
    Elzinga G, Westerhof N. Matching between ventricle and arterial load. An evolutionary process. Circ Res. 1991;68(6):1495–500.PubMedCrossRefGoogle Scholar
  36. 36.
    Van den Horn G, Westerhof N, Elzinga G. Optimal power generation by the left ventricle. A study in the anesthetized open thorax cat. Circ Res. 1985;56(2):252–61.PubMedCrossRefGoogle Scholar
  37. 37.
    Westerhof N, Elzinga G. The apparent source resistance of heart and muscle. Ann Biomed Eng. 1978;6(1):16–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Elzinga G, Westerhof N. End diastolic volume and source impedance of the heart. Ciba Found Symp. 1974;24:241–55.Google Scholar
  39. 39.
    Elzinga G, Piene H, De Jong J. Left and right ventricular pump function and consequences of having two pumps in one heart. A study on the isolated cat heart. Circ Res. 1980;46(4):564.PubMedCrossRefGoogle Scholar
  40. 40.
    Elzinga G, Westerhof N. Pressure and flow generated by the left ventricle against different impedances. Circ Res. 1973;32(2):178–86.CrossRefGoogle Scholar
  41. 41.
    Sunagawa K, Maughan WL, Sagawa K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res. 1985;56(4):586–95.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Wilcken DEL, et al. Effects of alterations in aortic impedance on the performance of the ventricles. Circ Res. 1964;14(4):283–93.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Toorop GP, et al. Matching between feline left ventricle and arterial load: optimal external power or efficiency. Am J Physiol Heart Circ Physiol. 1988;254(2):H279–85.CrossRefGoogle Scholar
  44. 44.
    Asanoi H, Sasayama S, Kameyama T. Ventriculoarterial coupling in normal and failing heart in humans. Circ Res. 1989;65(2):483–93.PubMedCrossRefGoogle Scholar
  45. 45.
    Van den Horn G, Westerhof N, Elzinga G. Feline left ventricle does not always operate at optimum power output. Am J Physiol Heart Circ Physiol. 1986;250(6):H961–7.CrossRefGoogle Scholar
  46. 46.
    Nichols WW, O’Rourke MF. Input impedance as ventricular load. In: Nichols WW, O’Rourke MF, editors. McDonald’s blood flow in arteries: theoretic, experimental, and clinical principles. Philadelphia: Lea & Fabiger; 1990. p. 330–42.Google Scholar
  47. 47.
    Mitchell JR. Is the heart a pressure or flow generator? Possible implications and suggestions for cardiovascular pedagogy. Adv Physiol Educ. 2015;39(3):242–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Furst B, O’Leary AM. Is the heart a pressure or flow generator? Possible implications and suggestions for cardiovascular pedagogy. Adv Physiol Educ. 2016;40(2):200.PubMedCrossRefGoogle Scholar
  49. 49.
    Suga H. Time course of left ventricular pressure-volume relationship under various enddiastolic volume. Jpn Heart J. 1969;10(6):509.PubMedCrossRefGoogle Scholar
  50. 50.
    Suga H. Time course of left ventricular pressure-volume relationship under various extents of aortic occlusion. Jpn Heart J. 1970;11(4):373.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Suga H, Sagawa K, Shoukas AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973;32(3):314–22.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Suga H. Cardiac energetics: from Emax to pressure-volume area. Clin Exp Pharmacol Physiol. 2003;30(8):580–5.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Senzaki H, Chen CH, Kass DA. Single-beat estimation of end-systolic pressure-volume relation in humans: a new method with the potential for noninvasive application. Circulation. 1996;94(10):2497–506.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Baan J, et al. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation. 1984;70(5):812–23.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Georgakopoulos D, et al. In vivo murine left ventricular pressure-volume relations by miniaturized conductance micromanometry. Am J Physiol Heart Circ Physiol. 1998;274(4):H1416.CrossRefGoogle Scholar
  56. 56.
    Segers P, Stergiopulos N, Westerhof N. Quantification of the contribution of cardiac and arterial remodeling to hypertension. Hypertension. 2000;36(5):760–5.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Kass D, et al. Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure-volume relationships [published erratum appears in Circulation 1988 Mar; 77 (3): 559]. Circulation. 1987;76(6):1422–36.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Van der Velde E, et al. Nonlinearity and load sensitivity of end-systolic pressure-volume relation of canine left ventricle in vivo. Circulation. 1991;83(1):315–27.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Su J, Crozatier B. Preload-induced curvilinearity of left ventricular end-systolic pressure-volume relations. Effects on derived indexes in closed-chest dogs. Circulation. 1989;79(2):431–40.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Ross J, et al. Adrenergic control of the force-frequency relation. Circulation. 1995;92(8):2327–32.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Chen CH, et al. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol. 2001;38(7):2028.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Kjorstad KE, Korvald C, Myrmel T. Pressure-volume-based single-beat estimations cannot predict left ventricular contractility in vivo. Am J Physiol Heart Circ Physiol. 2002;282(5):H1739.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Loiselle D, et al. Energetic consequences of mechanical loads. Prog Biophys Mol Biol. 2008;97(2):348–66.CrossRefGoogle Scholar
  64. 64.
    Evans C, Hill AV. The relation of length to tension development and heat production on contraction in muscle. J Physiol. 1914;49(1–2):10–6.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Gibbs CL, Chapman JB. Cardiac mechanics and energetics: chemomechanical transduction in cardiac muscle. American Journal of Physiology-Heart and Circulatory Physiology. 1985;249(2):H199–206.CrossRefGoogle Scholar
  66. 66.
    Starling E, Visscher M. The regulation of the energy output of the heart. J Physiol. 1927;62(3):243–61.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Fenn WO. A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog. J Physiol. 1923;58(2–3):175–203.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Suga H. Global cardiac function: mechano-energetico-informatics. J Biomech. 2003;36(5):713–20.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Suga H. Ventricular energetics. Physiol Rev. 1990;70(2):247.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Suga H, et al. Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circ Res. 1983;53(3):306–18.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Hata K, Goto Y, Suga H. External mechanical work during relaxation period does not affect myocardial oxygen consumption. Am J Physiol Heart Circ Physiol. 1991;261(6):H1778–84.CrossRefGoogle Scholar
  72. 72.
    Takaki M. Left ventricular mechanoenergetics in small animals. Jpn J Physiol. 2004;54(3):175.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Gibbs CL. Cardiac energetics: sense and nonsense. Clin Exp Pharmacol Physiol. 2003;30(8):598–603.PubMedCrossRefGoogle Scholar
  74. 74.
    Gibbs CL, Chapman J. Cardiac heat production. Annu Rev Physiol. 1979;41(1):507–19.PubMedCrossRefGoogle Scholar
  75. 75.
    Baxi J, Barclay C, Gibbs C. Energetics of rat papillary muscle during contractions with sinusoidal length changes. Am J Physiol Heart Circ Physiol. 2000;278(5):H1545–54.PubMedCrossRefGoogle Scholar
  76. 76.
    Barclay CJ, Widen C, Mellors L. Initial mechanical efficiency of isolated cardiac muscle. J Exp Biol. 2003;206(16):2725–32.PubMedCrossRefGoogle Scholar
  77. 77.
    Mast F, Elzinga G. Heat released during relaxation equals force-length area in isometric contractions of rabbit papillary muscle. Circ Res. 1990;67(4):893–901.PubMedCrossRefGoogle Scholar
  78. 78.
    Balaban RS. Cardiac energy metabolism homeostasis: role of cytosolic calcium. J Mol Cell Cardiol. 2002;34(10):1259–71.PubMedCrossRefGoogle Scholar
  79. 79.
    Neely J, et al. The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart. Biochem J. 1972;128(1):147.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Williamson J, et al. Coordination of citric acid cycle activity with electron transport flux. Circ Res. 1976;38(5 Suppl 1):I39.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Katz LA, et al. Relation between phosphate metabolites and oxygen consumption of heart in vivo. Am J Physiol Heart Circ Physiol. 1989;256(1):H265–74.CrossRefGoogle Scholar
  82. 82.
    Saks V, et al. Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J Physiol. 2006;571(2):253–73.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev. 2003;83(1):59–115.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Mancini D, Burkhoff D. Mechanical device-based methods of managing and treating heart failure. Circulation. 2005;112(3):438–48.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Gray NA, Selzman CH. Current status of the total artificial heart. Am Heart J. 2006;152(1):4–10.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Colacino F, et al. Modeling, analysis, and validation of a pneumatically driven left ventricle for use in mock circulatory systems. Med Eng Phys. 2007;29(8):829–39.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Baloa L, Boston J, Antaki J. Elastance-based control of a mock circulatory system. Ann Biomed Eng. 2001;29(3):244–51.PubMedCrossRefGoogle Scholar
  88. 88.
    Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974;35(1):117–26.PubMedCrossRefGoogle Scholar
  89. 89.
    Moscato F, et al. Left ventricular pressure-volume loop analysis during continuous cardiac assist in acute animal trials. Artif Organs. 2007;31(5):369–76.PubMedCrossRefGoogle Scholar
  90. 90.
    Vandenberghe S, et al. Modeling ventricular function during cardiac assist: does time-varying elastance work? ASAIO J. 2006;52(1):4.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Danielsen M, Ottesen JT. Describing the pumping heart as a pressure source. J Theor Biol. 2001;212(1):71–81.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Ottesen JT, Danielsen M. Modeling ventricular contraction with heart rate changes. J Theor Biol. 2003;222(3):337–46.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    DeVries WC. The permanent artificial heart. JAMA. 1988;259(6):849–59.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Copeland JG, et al. Experience with more than 100 total artificial heart implants. J Thorac Cardiovasc Surg. 2012;143(3):727–34.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Torregrossa G, et al. Results with syncardia total artificial heart beyond 1 year. ASAIO J. 2014;60(6):626–34.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Kohli HS, et al. Exercise blood pressure response during assisted circulatory support: comparison of the total artifical heart with a left ventricular assist device during rehabilitation. J Heart Lung Transplant. 2011;30(11):1207–13.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Masai T, et al. Hepatic dysfunction after left ventricular mechanical assist in patients with end-stage heart failure: role of inflammatory response and hepatic microcirculation. Ann Thorac Surg. 2002;73(2):549–55.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Rogers JG, et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol. 2010;55(17):1826–34.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Branko Furst
    • 1
  1. 1.Professor of AnesthesiologyAlbany Medical CollegeAlbanyUSA

Personalised recommendations