Friedrich Waismann’s Philosophy of Mathematics

  • Severin SchroederEmail author
  • Harry Tomany
Part of the History of Analytic Philosophy book series (History of Analytic Philosophy)


In their paper Severin Schroeder and Harry Tomany parallel Waismann’s writings on existence in mathematics, the meaning of mathematical concepts, equations and tautologies as well as infinity in minute detail with Wittgenstein’s philosophy of mathematics. We learn that, aside from two substantial issues—conventionalism and conjectures in mathematics—Waismann would very much follow in Wittgenstein’s steps. As to conjectures, while Waismann’s criticism of Wittgenstein’s early views is well placed here, Wittgenstein would later amend his position in the 1940s. Schroeder and Tomany conclude that Waismann would remain a Wittgensteinian philosopher of mathematics.


Mathematics Mathematical concepts Equations Tautologies Infinity 


  1. Ayer, A.J. 1977. Part of My Life. Oxford: Oxford University Press.Google Scholar
  2. Baker, Gordon. 1979. Verehrung und Verkehrung: Waismann and Wittgenstein. In Wittgenstein: Sources and Perspective, ed. C.G. Luckhardt, 243–285. Hassocks, Sussex: Harvester Press.Google Scholar
  3. Baker, Gordon. 2003. Preface. In The Voices of Wittgenstein: The Vienna Circle: Ludwig Wittgenstein and Friedrich Waismann, ed. G. Baker. London: Routledge.CrossRefGoogle Scholar
  4. Engelmann, Mauro Luiz. 2013. Wittgenstein’s Philosophical Development: Phenomenology, Grammar, Method, and the Anthropological View. New York: Macmillan.CrossRefGoogle Scholar
  5. Frascolla, Pasquale. 1994. Wittgenstein’s Philosophy of Mathematics. London: Routledge.Google Scholar
  6. Grassl, Wolfgang. 1982. Friedrich Waismann on the Foundations of Mathematics. In Lectures on the Philosophy of Mathematics, 3–25. Amsterdam: Rodopi. Google Scholar
  7. Rodych, Victor. 2000. Wittgenstein’s Critique of Set Theory. The Southern Journal of Philosophy XXXVIII: 281–319.CrossRefGoogle Scholar
  8. Schroeder, Severin. 2012. Conjecture, Proof, and Sense, in Wittgenstein’s Philosophy of Mathematics. In Epistemology: Contexts, Values, Disagreement. Proceedings of the 34th International Ludwig Wittgenstein Symposium in Kirchberg, 2011, ed. C. Jäger and W. Löffler, 461–475. Ontos: Frankfurt.Google Scholar
  9. Schroeder, Severin. 2013. Wittgenstein on Rules in Language and Mathematics. In The Textual Genesis of Wittgenstein’s Philosophical Investigations, ed. N. Venturinha, 155–167. London: Routldege.Google Scholar

Friedrich Waismann:

  1. EMD: Einführung in das mathematische Denken, Gerold: Wien, 1936; dtv: München, 1970 [English: Introduction to Mathematical Thinking: The Formation of Concepts in Modern Mathematics, tr.: T.J. Benac, New York: Dover Publ., 1951].Google Scholar
  2. LPM: Lectures on the Philosophy of Mathematics, ed.: W. Grassl, Amsterdam: Rodopi, 1982.Google Scholar
  3. LSP: Logik, Sprache, Philosophie, eds.: G.P. Baker and B. McGuinness, Stuttgart: Reclam, 1976 [English translation: The Principles of Linguistic Philosophy, ed.: R. Harré, London: Macmillan, 1965].Google Scholar

Ludwig Wittgenstein:

  1. AL: Wittgenstein’s Lectures, Cambridge, 1932–1935, ed.: A. Ambrose, Oxford: Blackwell, 1979.Google Scholar
  2. BB: The Blue and Brown Books, Oxford: Blackwell, 1958.Google Scholar
  3. BT: The Big Typescript: TS 213, ed. and tr.: C.G. Luckhardt and M.A.E. Aue, Oxford: Blackwell, 2005.Google Scholar
  4. LC: Lectures and Conversations on Aesthetics, Psychology and Religious Belief, ed.: C. Barrett, Oxford: Blackwell, 1978.Google Scholar
  5. LFM: Wittgenstein’s Lectures on the Foundations of Mathematics Cambridge, 1939, ed.: C. Diamond, Hassocks, Sussex: Harvester Press, 1976.Google Scholar
  6. LSP: Logik, Sprache, Philosophie, by Friedrich Waismann [based on dictations by Wittgenstein], Stuttgart: Reclam, 1976.Google Scholar
  7. MS Manuscript in Wittgenstein’s Nachlass: The Bergen Electronic Edition, Oxford: OUP, 2000.Google Scholar
  8. PG: Philosophical Grammar, ed.: R. Rhees, tr.: A.J.P. Kenny, Oxford: Blackwell, 1974.Google Scholar
  9. PI: Philosophical Investigations, eds: P.M.S. Hacker and J. Schulte, tr.: G.E.M. Anscombe; P.M.S. Hacker, J. Schulte, Oxford: Wiley-Blackwell, 2009.Google Scholar
  10. PR: Philosophical Remarks, ed.: R. Rhees, tr.: R. Hargreaves and R. White, Oxford: Blackwell, 1975.Google Scholar
  11. RFM: Remarks on the Foundations of Mathematics, eds: G.H. von Wright, R. Rhees, G.E.M. Anscombe; tr.: G.E.M. Anscombe, rev. ed., Oxford: Blackwell, 1978.Google Scholar
  12. WVC: Ludwig Wittgenstein and the Vienna Circle. Conversations recorded by Friedrich Waismann, ed.: B. McGuinness, tr.: J. Schulte and B. McGuinness, Oxford: Blackwell, 1979.Google Scholar
  13. Z: Zettel, eds: G.E.M. Anscombe and G.H. von Wright, tr.: G.E.M. Anscombe, Oxford: Blackwell, 1967.Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.University of ReadingReadingUK

Personalised recommendations