Advertisement

ROCOF Estimation via EMD, MEMD and NA-MEMD

  • Maja Muftić DedovićEmail author
  • Samir Avdaković
  • Nedis Dautbašić
  • Adnan Mujezinović
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 83)

Abstract

This paper presents results of the rate of change of frequency (ROCOF) estimation using Huang’s Empirical Mode Decomposition (EMD), Multivariate Empirical Mode Decomposition (MEMD) and Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD). On the generated test signals algorithms are performed and the obtained results are compared and discussed. The results are compared with actual values of the rate of change of frequency obtained by derivatization of the generated test signals as input data of the aforementioned algorithms. The performance of the algorithm are also tested using signals contaminated by zero-mean Gaussian noise. The results of rate of change of frequency estimation indicates that all three algorithms have great accuracy in the rate of change of frequency estimation.

References

  1. 1.
    Daubechies, I., Lu, J., Wu, H.-T.: Synchrosqueezing wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30(2), 243–261 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London A 454(1971), 903–995 (1998)Google Scholar
  3. 3.
    Hou, T.Y., Shi, Z.: Adaptive data analysis via sparse time–frequency representation. Adv. Adapt. Data Anal. 3(1), 1–28 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hou, T.Y., Shi, Z.: Data driven time frequency analysis. Appl. Comput. Harmon. Anal. 35(2), 284–308 (2013)Google Scholar
  5. 5.
    Huang, N.E., Wu, Z., Long, S.R., Arnold, K.C., Chen, X., Blank, K.: On instantaneous frequency. Adv. Adapt. Data Anal. 1(2), 177–229 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Meeson Jr., R.N.: HHT sifting and filtering. In: Huang, N.E., Shen, S.S.S. (eds.) Hilbert–Huang Transform and Its Applications, pp. 75–105. World Scientific, Singapore (2005)CrossRefGoogle Scholar
  7. 7.
    Looney, D., Mandic, D.P.: Multi-scale image fusion using complex EMD. IEEE Trans. Sig. Process. 57(4), 1626–1630 (2009)CrossRefGoogle Scholar
  8. 8.
    Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(1), 1–41 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mandic, D.P., ur Rehman, N., Wu, Z., Huang, N.E.: Empirical mode decomposition-based time-frequency analysis of multivariate. IEEE Sig. Process. Mag. 30(6) (2013).  https://doi.org/10.1109/msp.2013.2267931CrossRefGoogle Scholar
  10. 10.
    Rehman, N., Mandic, D.P.: Multivariate empirical mode decomposition. Proc. Math. Phys. Eng. Sci. 466(2117), 1291–1302 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Rehman, N.U., Park, C., Huang, N.E., Mandic, D.P.: EMD via MEMD: multivariate noise aided computation of standard EMD. Adv. Adapt. Data Anal. 5(2), 1350007 (2013)Google Scholar
  12. 12.
    Rehman, N., Mandic, D.P.: Filterbank property of multivariate EMD. IEEE Trans. Sig. Process. 59(5), 2421–2426 (2011)CrossRefGoogle Scholar
  13. 13.
    Dedović, M.M., Avdaković, S.: A new approach for df/dt and active power imbalance in power system estimation using Huang’s empirical mode decomposition. Int. J. Electr. Power Energ. Syst. 110, 62–71Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Maja Muftić Dedović
    • 1
    Email author
  • Samir Avdaković
    • 1
  • Nedis Dautbašić
    • 1
  • Adnan Mujezinović
    • 1
  1. 1.Faculty of Electrical EngineeringUniversity of SarajevoSarajevoBosnia and Herzegovina

Personalised recommendations