Advertisement

Electricity Consumption Forecasting in the Western Balkan Countries

  • Maja Muftić DedovićEmail author
  • Emir Šaljić
  • Lejla Jugo
  • Zekira Harbaš
  • Azra Đelmo
  • Lejla Hasanbegović
  • Samir Avdaković
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 83)

Abstract

This paper presents results of electricity consumption forecasting in the Western Balkan countries. Electricity consumption forecasting in the Western Balkan countries Bosnia and Herzegovina, Serbia, Montenegro, Albania, Kosovo and North Macedonia are done using conventional techniques based on extrapolation techniques using correlation between gross domestic product and electricity power consumption. Also, for electricity consumption forecasting is used advanced technique artificial neural intelligence. Inputs for training artificial neural network are for the first test case gross domestic product, population and decomposed time series of electricity consumption using Huang’s Empirical Mode Decomposition. The forecasting results using time series of electricity consumption processed with Discrete Wavelet Transform as input for training artificial neural network are also presented. Results of all used techniques are also presented, compared and discussed. Forecasted results of electricity consumption in Western Balkan for 2035 year indicate increase of about 20% of electricity consumption compared to 2017 year.

References

  1. 1.
    Feilat, E.A., Talal Al-Sha’abi, D., Momani, M.A.: Long-term load forecasting using neural network approach for Jordan’s power system. Engineering Press (2017)Google Scholar
  2. 2.
    Dinesh Reddy, M., Valley, R.K., Vishali, N.: Load forecasting using linear regression analysis in time series model for RGUKT, R.K. valley campus HT feeder. Int. J. Eng. Res. Technol. 6(5). ISSN: 2278-0181 (2017)Google Scholar
  3. 3.
    Muftić-Dedović, M., Dautbašić, N., Mujezinović, A.: Application of artificial neural network and empirical mode decomposition for predications of hourly values of active power consumption. In: 28th DAAAM International Symposium on Intelligent Manufacturing and Automation.  https://doi.org/10.2507/28th.daaam.proceedings.xxx
  4. 4.
    Tačković, K., Nikolovski, S., Boras, V.: Kratkoročnoprognoziranjeopterećenjaprimjenommodelaumjetneneuronskemreže, Energija 5, Zagreb (2008)Google Scholar
  5. 5.
    Mansouri, V., Akbari, M.E.: Neural networks in electric load forecasting: a comprehensive survey. J. Artif. Intell. Electr. Eng. 3(10), 37–50 (2014)Google Scholar
  6. 6.
    Hadžić, A., Dautbašić, N., Konjić, T., Bećirović, E.: Prognozadnevnogdijagramaopterećenjaprimjenomneuronskihmrežai ARIMA modela, BosanskohercegovačkikomitetMeđunarodnogvijećazavelikeelektričnesisteme – BH K Cigre, Sarajevo (2017)Google Scholar
  7. 7.
    Bai, W., Liu, Z., Zhou, D., Wang, Q., Research of the load forecasting model base on HHT and combination of ANN. In: Power and Energy Engineering Conference, APPEEC (2009)Google Scholar
  8. 8.
    Khandelwal, I., Adhikari, R., Verma, G.: Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition. Procedia Comput. Sci. 48, 173–179 (2015)Google Scholar
  9. 9.
    Deka, P.C., Haque, L., Banhatti, A.G.: Discrete wavelet-ANN approach in time series flow forecasting - a case study of Brahmaputra river. Int. J. Earth Sci. Eng. 5(4), 673–685 (2012)Google Scholar
  10. 10.
    Zhang, W., Mu, G., Yan, G., An, J.: A power load forecast approach based on spatial-temporal clustering of load data. National Natural Science Foundation of China, Grant/Award Number: NSFC-51437003, 21 October 2017Google Scholar
  11. 11.
    Lee, K.Y., Park, J.H.: Short-term load forecasting using an artificial neural network. Trans. Power Syst. 7(1), 124–132 (1992)Google Scholar
  12. 12.
    Huang, H.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903–995 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dedovic, M.M., Avdakovic, S., Dautbasic, N.: Impact of air temperature on active and reactive power consumption - Sarajevo case study. Bosanskohercegovačkaelektrotehnika, under revisionGoogle Scholar
  14. 14.
    Dedovic, M.M., Avdakovic, S., Turkovic, I., Dautbasic, N., Konjic, T.: Forecasting PM10 concentrations using neural networks and system for improving air quality. In: 2016 XI International Symposium on Telecommunications (BIHTEL), pp. 1–6 (2016)Google Scholar
  15. 15.
    Avdakovic, S., Nuhanovic, A., Kusljugic, M.: Wavelet theory and applications for estimation of active power unbalance in power system. Advances in Wavelet Theory and Their Applications in Engineering, Physics and Technology. IN-TECH. ISBN 979-953-307-538-8 (2012)Google Scholar
  16. 16.
    Avdaković, S., Čišija, N.: Wavelets as a tool for power system dynamic events analysis – state-of-the-art and future applications. J. Electr. Syst. Inf. Technol. 2(1), 47–57 (2015)Google Scholar
  17. 17.
    Avdakovic, S., Ademovic, A., Nuhanovic, A.: Insight into the properties of the UK power consumption using a linear regression and wavelet transform approach. Elektrotehniški Vestnik/Electrotech. Rev. 79(5), 278–283 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Maja Muftić Dedović
    • 1
    Email author
  • Emir Šaljić
    • 1
  • Lejla Jugo
    • 1
  • Zekira Harbaš
    • 1
  • Azra Đelmo
    • 1
  • Lejla Hasanbegović
    • 1
  • Samir Avdaković
    • 1
  1. 1.Faculty of Electrical EngineeringUniversity of SarajevoSarajevoBosnia and Herzegovina

Personalised recommendations