Advertisement

Oxidatively Modified Proteins and Maintenance Systems as Biomarkers of Aging

  • Bertrand FriguetEmail author
  • Martin A. Baraibar
Chapter
Part of the Healthy Ageing and Longevity book series (HAL, volume 10)

Abstract

The accumulation of non-functional oxidized proteins is a hallmark of aging both in cells and in the body. This age-related build-up of proteins modified by oxidative processes results, at least in part, from an increase in reactive oxygen species and other toxic compounds from both cellular metabolism and external environmental factors. Failure of protein maintenance (i.e. oxidized protein degradation and repair) is another major contributor to the age-associated accumulation of damaged proteins. Oxidative damage to the cellular proteome, leading to the formation of carbonylated proteins derives from the direct oxidation of several amino acids side chains and also through protein adducts formation with lipid peroxidation products and dicarbonyl glycating compounds. Since the accumulation of oxidatively damaged proteins is believed to participate to the age-related decline in cellular function, their identification has been achieved in human or mammalian animal models of aging and age-related diseases as well as in human fibroblasts and myoblasts during cellular senescence and upon oxidative stress. Indeed, the identification of damaged protein targets is expected not only to define potential biomarkers of aging but also to give insight into the mechanisms by which these damaged proteins accumulate and may contribute to cellular dysfunction.

Keywords

Protein oxidation Protein glycoxidation Oxidized protein degradation Proteasome Oxidized protein repair Methionine sulfoxide reductases Protein maintenance Cytoskeleton Energy metabolism 

References

  1. Ahmed EK, Picot CR, Bulteau AL, Friguet B (2007) Protein oxidative modifications and replicative senescence of WI-38 human embryonic fibroblasts. Ann N Y Acad Sci 1119:88–96PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ahmed EK, Rogowska-Wrzesinska A, Roepstorff P, Bulteau AL, Friguet B (2010) Protein modification and replicative senescence of WI-38 human embryonic fibroblasts. Aging Cell 9:252–272PubMedCrossRefPubMedCentralGoogle Scholar
  3. Altun M, Besche HC, Overkleeft HS, Piccirillo R, Edelmann MJ, Kessler BM, Goldberg AL, Ulfhake B (2010) Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J Biol Chem 285:39597–39608PubMedPubMedCentralCrossRefGoogle Scholar
  4. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefPubMedCentralGoogle Scholar
  5. Avery SV (2011) Molecular targets of oxidative stress. Biochem J 434:201–210PubMedCrossRefPubMedCentralGoogle Scholar
  6. Baraibar MA, Friguet B (2012) Changes of the proteasomal system during the aging process. Prog Mol Biol Transl Sci 109:249–275PubMedCrossRefPubMedCentralGoogle Scholar
  7. Baraibar MA, Friguet B (2013) Oxidative proteome modifications target specific cellular pathways during oxidative stress, cellular senescence and aging. Exp Gerontol 48:620–625PubMedCrossRefPubMedCentralGoogle Scholar
  8. Baraibar MA, Hyzewicz J, Rogowska-Wrzesinska A, Ladouce R, Roepstorff P, Mouly V, Friguet B (2011) Oxidative stress-induced proteome alterations target different cellular pathways in human myoblasts. Free Radic Biol Med 51:1522–1532PubMedCrossRefPubMedCentralGoogle Scholar
  9. Baraibar MA, Ladouce R, Friguet B (2012a) A method for detecting and/or quantifying carbonylated proteins. WO/2012/175519Google Scholar
  10. Baraibar MA, Barbeito AG, Muhoberac BB, Vidal RA (2012b) A mutant light-chain ferritin that causes neurodegeneration has enhanced propensity toward oxidative damage. Free Radic Biol Med 52:1692–1697PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baraibar MA, Liu L, Ahmed EK, Friguet B (2012c) Protein oxidative damage at the crossroads of cellular senescence, ageing, and age-related diseases. Oxid Med Cell Longev. 2012:919832PubMedPubMedCentralCrossRefGoogle Scholar
  12. Baraibar MA, Ladouce R, Friguet B (2013) Proteomic quantification and identification of carbonylated proteins upon oxidative stress and during cellular aging. J Proteomics 92:63–70PubMedCrossRefPubMedCentralGoogle Scholar
  13. Baraibar MA, Hyzewicz J, Rogowska-Wrzesinska A, Bulteau AL, Prip-Buus C, Butler-Browne G, Friguet B (2016) Impaired energy metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes. Aging (Albany NY) 8:3375–3389CrossRefGoogle Scholar
  14. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316PubMedCrossRefPubMedCentralGoogle Scholar
  15. Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–4PubMedCrossRefPubMedCentralGoogle Scholar
  16. Boschi-Muller S, Gand A, Branlant G (2008) The methionine sulfoxide reductases: Catalysis and substrate specificities. Arch Biochem Biophys 474:266–273PubMedCrossRefPubMedCentralGoogle Scholar
  17. Brennan LA, Lee W, Cowell T, Giblin F, Kantorow M (2009) Deletion of mouse MsrA results in HBO-induced cataract: MsrA repairs mitochondrial cytochrome c. Mol Vis 15:985–999PubMedPubMedCentralGoogle Scholar
  18. Breusing N, Grune T (2008) Regulation of proteasome-mediated protein degradation during oxidative stress and aging. Biol Chem 389:203–209PubMedCrossRefPubMedCentralGoogle Scholar
  19. Brovelli A, Seppi C, Castellana AM, De Renzis MR, Blasina A, Balduini C (1990) Oxidative lesion to membrane proteins in senescent erythrocytes. Biomed Biochim Acta 49:S218–S223PubMedPubMedCentralGoogle Scholar
  20. Bulteau AL, Verbeke P, Petropoulos I, Chaffotte AF, Friguet B (2001) Proteasome inhibition in glyoxal-treated fibroblasts and resistance of glycated glucose-6-phosphate dehydrogenase to 20 S proteasome degradation in vitro. J Biol Chem 276:45662–45668PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bulteau AL, Szweda LI, Friguet B (2002) Age-dependent declines in proteasome activity in the heart. Arch Biochem Biophys 397:298–304PubMedCrossRefPubMedCentralGoogle Scholar
  22. Butterfield DA, Poon HF, St Clair D, Keller JN, Pierce WM, Klein JB, Markesbery WR (2006) Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol Dis 22:223–232PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cabreiro F, Picot CR, Perichon M, Castel J, Friguet B, Petropoulos I (2008) Overexpression of mitochondrial methionine sulfoxide reductase B2 protects leukemia cells from oxidative stress-induced cell death and protein damage. J Biol Chem 283:16673–16681PubMedCrossRefPubMedCentralGoogle Scholar
  24. Carrard G, Dieu M, Raes M, Toussaint O, Friguet B (2003) Impact of ageing on proteasome structure and function in human lymphocytes. Int J Biochem Cell Biol 35:728–739PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chondrogianni N, Gonos ES (2005) Proteasome dysfunction in mammalian aging: steps and factors involved. Exp Gerontol 40:931–938PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chondrogianni N, Petropoulos I, Franceschi C, Friguet B, Gonos ES (2000) Fibroblast cultures from healthy centenarians have an active proteasome. Exp Gerontol 35:721–728PubMedCrossRefPubMedCentralGoogle Scholar
  27. Chondrogianni N, Stratford FL, Trougakos IP, Friguet B, Rivett AJ, Gonos ES (2003) Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J Biol Chem 278:28026–28037PubMedCrossRefPubMedCentralGoogle Scholar
  28. Chondrogianni N, Tzavelas C, Pemberton AJ, Nezis IP, Rivett AJ, Gonos ES (2005) Overexpression of proteasome beta5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates. J Biol Chem 280:11840–11850PubMedCrossRefPubMedCentralGoogle Scholar
  29. Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES (2014) Protein damage, repair and proteolysis. Mol Aspects Med 35:1–71PubMedCrossRefPubMedCentralGoogle Scholar
  30. Chondrogianni N, Georgila K, Kourtis N, Tavernarakis N, Gonos ES (2015) 20S proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans. FASEB J. 29:611–622PubMedCrossRefPubMedCentralGoogle Scholar
  31. Conconi M, Szweda LI, Levine RL, Stadtman ER, Friguet B (1996) Age-related decline of rat liver multicatalytic proteinase activity and protection from oxidative inactivation by heat-shock protein 90. Arch Biochem Biophys 331:232–234PubMedCrossRefPubMedCentralGoogle Scholar
  32. Cook C, Gass J, Dunmore J, Tong J, Taylor J, Eriksen J, McGowan E, Lewis J, Johnston J, Petrucelli L (2009) Aging is not associated with proteasome impairment in UPS reporter mice. PLoS ONE 4:e5888PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human diseases. Trends Mol. Med. 9:169–176PubMedCrossRefPubMedCentralGoogle Scholar
  34. Debacq-Chainiaux F, Borlon C, Pascal T, Royer V, Eliaers F, Ninane N, Carrard G, Friguet B, de Longueville F, Boffe S, Remacle J, Toussaint O (2005) Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level triggers premature senescence through the TGF-beta1 signaling pathway. J Cell Sci 118:743–758PubMedCrossRefPubMedCentralGoogle Scholar
  35. Farout L, Friguet B (2006) Proteasome function in aging and oxidative stress: implications in protein maintenance failure. Antioxid Redox Signal 8:205–216PubMedCrossRefPubMedCentralGoogle Scholar
  36. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflamm-aging (2000) An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254Google Scholar
  37. Friguet B (2006) Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Lett 580:2910–2916PubMedCrossRefPubMedCentralGoogle Scholar
  38. Friguet B, Szweda LI (1997) Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Lett 405:21–25PubMedCrossRefPubMedCentralGoogle Scholar
  39. Gabbita SP, Aksenov MY, Lovell MA, Markesbery WR (1999) Decrease in peptide methionine sulfoxide reductase in Alzheimer’s disease brain. J Neurochem 73:1660–1666PubMedCrossRefPubMedCentralGoogle Scholar
  40. Gil-Mohapel J, Brocardo PS, Christie BR (2014) The role of oxidative stress in Huntington’s disease: are antioxidants good therapeutic candidates? Curr Drug Targets 15:454–468PubMedCrossRefPubMedCentralGoogle Scholar
  41. Giulivi C, Traaseth NJ, Davies KJ (2003) Tyrosine oxidation products: analysis and biological relevance. Amino Acids 25:227–232PubMedCrossRefPubMedCentralGoogle Scholar
  42. Glaser CB, Yamin G, Uversky VN, Fink AL (2005) Methionine oxidation, alpha-synuclein and Parkinson’s disease. Biochim Biophys Acta 1703:157–169PubMedCrossRefPubMedCentralGoogle Scholar
  43. Grune T, Merker K, Sandig G, Davies KJ (2003) Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 305:709–718PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hamer G, Matilainen O, Holmberg CI (2010) A photoconvertible reporter of the ubiquitin-proteasome system in vivo. Nat Methods 7:473–478PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hamon MP, Bulteau AL, Friguet B (2015) Mitochondrial proteases and protein quality control in ageing and longevity. Ageing Res Rev 23:56–66PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hayashi T, Goto S (1998) Age-related changes in the 20S and 26S proteasome activities in the liver of male F344 rats. Mech Ageing Dev 102:55–66PubMedCrossRefPubMedCentralGoogle Scholar
  47. Horiuchi S, Araki N (1994) Advanced glycation end products of the Maillard reaction and their relation to aging. Gerontology 40(Suppl 2):10–15PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hou L, Kang I, Marchant RE, Zagorski MG (2002) Methionine 35 oxidation reduces fibril assembly of the amyloid abeta-(1-42) peptide of Alzheimer’s disease. J Biol Chem 277:40173–40176PubMedCrossRefPubMedCentralGoogle Scholar
  49. Huber N, Sakai N, Eismann T, Shin T, Kuboki S, Blanchard J, Schuster R, Edwards MJ, Wong HR, Lentsch AB (2009) Age-related decrease in proteasome expression contributes to defective nuclear factor-kappaB activation during hepatic ischemia/reperfusion. Hepatology 49:1718–1728PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hwang JS, Chang I, Kim S (2007) Age-associated decrease in proteasome content and activities in human dermal fibroblasts: restoration of normal level of proteasome subunits reduces aging markers in fibroblasts from elderly persons. J Gerontol A Biol Sci Med Sci 62:490–9CrossRefGoogle Scholar
  51. Kapphahn RJ, Giwa BM, Berg KM, Roehrich H, Feng X, Olsen TW, Ferrington DA (2006) Retinal proteins modified by 4-hydroxynonenal: identification of molecular targets. Exp Eye Res 83:165–175PubMedCrossRefPubMedCentralGoogle Scholar
  52. Keller JN, Huang FF, Markesbery WR (2000) Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience 98:149–156PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65:177–185PubMedPubMedCentralGoogle Scholar
  54. Kregel KC, Zhang HJ (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292:R18–R36PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kruegel U, Robison B, Dange T, Kahlert G, Delaney JR, Kotireddy S, Tsuchiya M, Tsuchiyama S, Murakami CJ, Schleit J, Sutphin G, Carr D, Tar K, Dittmar G, Kaeberlein M, Kennedy BK, Schmidt M (2011) Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet 7:e1002253PubMedPubMedCentralCrossRefGoogle Scholar
  56. Le Boulch M, Ahmed EK, Rogowska-Wrzesinska A, Baraibar MA, Friguet B (2018) Proteome oxidative carbonylation during oxidative stress-induced premature senescence of WI-38 human fibroblasts. Mech Ageing Dev 170:59–71PubMedCrossRefPubMedCentralGoogle Scholar
  57. Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–796PubMedCrossRefPubMedCentralGoogle Scholar
  58. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging Cell 153:1194–217PubMedPubMedCentralCrossRefGoogle Scholar
  59. Louie JL, Kapphahn RJ, Ferrington DA (2002) Proteasome function and protein oxidation in the aged retina. Exp Eye Res 75:271–284PubMedCrossRefPubMedCentralGoogle Scholar
  60. Lourenço dos Santos S, Baraibar MA, Lundberg S, Eeg-Olofsson O, Larsson L, Friguet B (2015) Oxidative proteome alterations during skeletal muscle ageing. Redox Biol 5:267–74PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lourenço dos Santos S, Petropoulos I, Friguet B (2018) The oxidized protein repair enzymes methionine sulfoxide reductases and their roles in protecting against oxidative stress, in ageing and in regulating protein function. Antioxidants (Basel) 7(12). pii: E191Google Scholar
  62. Marques C, Pereira P, Taylor A, Liang JN, Reddy VN, Szweda LI, Shang F (2004) Ubiquitin-dependent lysosomal degradation of the HNE-modified proteins in lens epithelial cells. FASEB J 18:1424–1426PubMedPubMedCentralCrossRefGoogle Scholar
  63. Martinez A, Portero-Otin M, Pamplona R, Ferrer I (2010) Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates. Brain Pathol 20:281–297PubMedCrossRefPubMedCentralGoogle Scholar
  64. Mecocci P, Fano G, Fulle S, MacGarvey U, Shinobu L, Polidori MC, Cherubini A, Vecchiet J, Senin U, Beal MF (1999) Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med 26:303–308PubMedCrossRefPubMedCentralGoogle Scholar
  65. Merker K, Grune T (2000) Proteolysis of oxidised proteins and cellular senescence. Exp Gerontol 35:779–786PubMedCrossRefPubMedCentralGoogle Scholar
  66. Moskovitz J, Bar-Noy S, Williams WM, Requena J, Berlett BS, Stadtman ER (2001) Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci U S A 98:12920–5CrossRefGoogle Scholar
  67. Moskovitz J, Du F, Bowman CF, Yan SS (2016) Methionine sulfoxide reductase a affects beta-amyloid solubility and mitochondrial function in a mouse model of Alzheimer’s disease. Am J Physiol Endocrinol Metab 310:E388–E393PubMedPubMedCentralCrossRefGoogle Scholar
  68. Perez VI, Buffenstein R, Masamsetti V, Leonard S, Salmon AB, Mele J, Andziak B, Yang T, Edrey Y, Friguet B, Ward W, Richardson A, Chaudhuri A (2009) Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc Natl Acad Sci U S A 106:3059–64CrossRefGoogle Scholar
  69. Petropoulos I, Friguet B (2005) Protein maintenance in aging and replicative senescence: a role for the peptide methionine sulfoxide reductases. Biochim Biophys Acta 1703:261–266PubMedCrossRefPubMedCentralGoogle Scholar
  70. Petropoulos I, Conconi M, Wang X. Hoenel B, Bregegere F, Milner Y, Friguet B (2000) Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells. J Gerontol A Biol Sci Med Sci 55:B220–7CrossRefGoogle Scholar
  71. Petropoulos I, Mary J, Perichon M, Friguet B (2001) Rat peptide methionine sulphoxide reductase: cloning of the cDNA, and down-regulation of gene expression and enzyme activity during aging. Biochem J 355:819–825PubMedPubMedCentralCrossRefGoogle Scholar
  72. Picot CR, Perichon M, Cintrat J-C, Friguet B, Petropoulos I (2004) The peptide methionine sulfoxide reductases, MsrA and MsrB (hCBS-1), are downregulated during replicative senescence of human WI-38 fibroblasts. FEBS Lett 558:74–78PubMedCrossRefPubMedCentralGoogle Scholar
  73. Picot CR, Petropoulos I, Perichon M, Moreau M, Nizard C, Friguet B (2005) Overexpression of MsrA protects WI-38 SV40 human fibroblasts against H2O2-mediated oxidative stress. Free Radic Biol Med 39:1332–1341PubMedCrossRefPubMedCentralGoogle Scholar
  74. Picot CR, Moreau M, Juan M, Noblesse E, Nizard C, Petropoulos I, Friguet B (2007) Impairment of methionine sulfoxide reductase during UV irradiation and photoaging. Exp Gerontol 42:859–863PubMedCrossRefPubMedCentralGoogle Scholar
  75. Ponnappan U, Zhong M, Trebilcock GU (1999) Decreased proteasome-mediated degradation in T cells from the elderly: a role in immune senescence. Cell Immunol 192:167–174PubMedCrossRefPubMedCentralGoogle Scholar
  76. Ruan H, Tang XD, Chen ML, Joiner ML, Sun G, Brot N, Weissbach H, Heinemann SH, Iverson L, Wu CF, Hoshi T (2002) High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci U S A 99:2748–2753PubMedPubMedCentralCrossRefGoogle Scholar
  77. Salmon AB, Perez VI, Bokov A, Jernigan A, Kim G, Zhao H, Levine RL, Richardson A (2009) Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span. FASEB J 23:3601–3608PubMedPubMedCentralCrossRefGoogle Scholar
  78. Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68:2092–2097PubMedCrossRefPubMedCentralGoogle Scholar
  79. Shibatani T, Ward WF (1996) Effect of age and food restriction on alkaline protease activity in rat liver. J Gerontol A Biol Sci Med Sci 51:B175–B178PubMedCrossRefPubMedCentralGoogle Scholar
  80. Shibatani T, Nazir M, Ward WF (1996) Alteration of rat liver 20S proteasome activities by age and food restriction. J Gerontol A Biol Sci Med Sci 51:B316–22CrossRefGoogle Scholar
  81. Shringarpure R, Davies KJ (2002) Protein turnover by the proteasome in aging and disease. Free Radic Biol Med 32:1084–1089PubMedCrossRefPubMedCentralGoogle Scholar
  82. Sitte N, Merker K, von Zglinicki T, Grune T (2000) Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts. Free Radic Biol Med 28:701–708PubMedCrossRefPubMedCentralGoogle Scholar
  83. Stadtman ER (2006) Protein oxidation and aging. Free Radic Res. 40:1250–1258PubMedCrossRefPubMedCentralGoogle Scholar
  84. Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218PubMedCrossRefPubMedCentralGoogle Scholar
  85. Swomley AM, Butterfield DA (2015) Oxidative stress in Alzheimer disease and mild cognitive impairment: evidence from human data provided by redox proteomics. Arch Toxicol 89:1669–1680PubMedCrossRefPubMedCentralGoogle Scholar
  86. Szweda PA, Camouse M, Lundberg KC, Oberley TD, Szweda LI (2003) Aging, lipofuscin formation, and free radical-mediated inhibition of cellular proteolytic systems. Ageing Res Rev 2:383–405PubMedCrossRefPubMedCentralGoogle Scholar
  87. Tamarit J, de Hoogh A, Obis E, Alsina D, Cabiscol E, Ros J (2012) Analysis of oxidative stress-induced protein carbonylation using fluorescent hydrazides. J Proteomics 75:3778–3788PubMedCrossRefPubMedCentralGoogle Scholar
  88. Tonoki A, Kuranaga E, Tomioka T, Hamazaki J, Murata S, Tanaka K, Miura M (2009) Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol Cell Biol 29:1095–1106PubMedCrossRefPubMedCentralGoogle Scholar
  89. Ugarte N, Petropoulos I, Friguet B (2010) Oxidized mitochondrial protein degradation and repair in aging and oxidative stress. Antioxid Redox Signal 13:539–549PubMedCrossRefPubMedCentralGoogle Scholar
  90. Vanhooren V, Navarrete Santos A, Voutetakis K, Petropoulos I, Libert C, Simm A, Gonos ES, Friguet B (2015) Protein modification and maintenance systems as biomarkers of ageing. Mech Ageing Dev 151:71–84PubMedCrossRefPubMedCentralGoogle Scholar
  91. Vernace VA, Arnaud L, Schmidt-Glenewinkel T, Figueiredo-Pereira ME (2007) Aging perturbs 26S proteasome assembly in Drosophila melanogaster. FASEB J. 21:2672–2682PubMedPubMedCentralCrossRefGoogle Scholar
  92. Vilchez D, Morantte I, Liu Z, Douglas PM, Merkwirth C, Rodrigues AP, Manning G, Dillin A (2012) RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 489:263–268PubMedCrossRefPubMedCentralGoogle Scholar
  93. Yao Y, Tsuchiyama S, Yang C, Bulteau AL, He C, Robison B, Tsuchiya M, Miller D, Briones V, Tar K, Potrero A, Friguet B, Kennedy BK, Schmidt M (2015) Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor. Mig1.PLoS Genet 11:e1004968PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Aging, B2A-IBPSSorbonne UniversitéParisFrance
  2. 2.OxiProteomics SASParisFrance

Personalised recommendations