An Overview of the Molecular and Cellular Biomarkers of Aging

  • I. A. SolovevEmail author
  • M. V. Shaposhnikov
  • Alexey Moskalev
Part of the Healthy Ageing and Longevity book series (HAL, volume 10)


The pace of physiological aging differs much in individuals, thus the tools to measure it precisely are to be found. Every quantitative trait of the organism, which is known to change with age, may be used as a biomarker of aging, but consequently not all biomarkers are informative and valuable for diagnostic purposes. The present chapter contains a review of basic molecular and cellular biomarkers of aging which are subdivided into groups named after the main target (it may be a molecule, a signaling cascade (or molecular complex), an intracellular structure or its functions) which significant changes are measured during aging. The process of biomarkers’ evaluation is described in the review as well as the procedure of endophenotype evaluation. We also discussed the relationship between endophenotypes and biomarkers in the context of existing “omics” approach in biogerontology.


Biomarker Aging Biological age Endophenotype Omics 


  1. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M, Pascual G (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15(8):978–990CrossRefGoogle Scholar
  2. Akbarian S, Beeri MS, Haroutunian V (2013) Epigenetic determinants of healthy and diseased brain aging and cognition. JAMA Neurol 70(6):711–718CrossRefGoogle Scholar
  3. Ameling S, Kacprowski T, Chilukoti RK, Malsch C, Liebscher V, Suhre K, Pietzner M, Friedrich N, Homuth G, Hammer E, Völker U (2015) Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study. BMC Med Genomics 8(1):61Google Scholar
  4. Barazzoni R, Short KR, Nair KS (2000) Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. J Biol Chem 275(5):3343–3347CrossRefGoogle Scholar
  5. Bekaert S, De Meyer T, Van Oostveldt P (2005) Telomere attrition as ageing biomarker. Anticancer Res 25(4):3011–3021PubMedGoogle Scholar
  6. Bota DA, Van Remmen H, Davies KJ (2002) Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Lett 532(1–2):103–106CrossRefGoogle Scholar
  7. Briel M, Ferreira-Gonzalez I, You JJ, Karanicolas PJ, Akl EA, Wu P, Blechacz B, Bassler D, Wei X, Sharman A, Whitt I (2009) Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ 338:b92CrossRefGoogle Scholar
  8. Chaleckis R, Murakami I, Takada J, Kondoh H, Yanagida M (2016) Individual variability in human blood metabolites identifies age-related differences. Proc Natl Acad Sci 113(16):4252–4259CrossRefGoogle Scholar
  9. Codd V, Mangino M, van der Harst P, Braund PS, Kaiser M, Beveridge AJ, Rafelt S, Moore J, Nelson C, Soranzo N, Zhai G (2010) Common variants near TERC are associated with mean telomere length. Nat Genet 42(3):197–199CrossRefGoogle Scholar
  10. ElSharawy A, Keller A, Flachsbart F, Wendschlag A, Jacobs G, Kefer N, Brefort T, Leidinger P, Backes C, Meese E, Schreiber S (2012) Genome-wide miRNA signatures of human longevity. Aging Cell 11(4):607–616CrossRefGoogle Scholar
  11. Engelfriet PM, Jansen EH, Picavet HSJ, Dollé ME (2013) Biochemical markers of aging for longitudinal studies in humans. Epidemiol Rev 35(1):132–151CrossRefGoogle Scholar
  12. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol Ser A Biomed Sci Med Sci 69(Suppl_1):S4–S9CrossRefGoogle Scholar
  13. Gombar S, Jung HJ, Dong F, Calder B, Atzmon G, Barzilai N, Tian XL, Pothof J, Hoeijmakers JH, Campisi J, Vijg J (2012) Comprehensive microRNA profiling in B-cells of human centenarians by massively parallel sequencing. BMC Genom 13(1):353CrossRefGoogle Scholar
  14. Gorisse L, Pietrement C, Vuiblet V, Schmelzer CE, Köhler M, Duca L, Debelle L, Fornès P, Jaisson S, Gillery P (2016) Protein carbamylation is a hallmark of aging. Proc Natl Acad Sci 113(5):1191–1196CrossRefGoogle Scholar
  15. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160(4):636–645CrossRefGoogle Scholar
  16. Grammatikakis I, Panda AC, Abdelmohsen K, Gorospe M (2014) Long noncoding RNAs (lncRNAs) and the molecular hallmarks of aging. Aging (Albany NY) 6(12):992CrossRefGoogle Scholar
  17. Gregory ML, Burton VJ, Shapiro BK (2015) Developmental disabilities and metabolic disorders. In: Neurobiology of brain disorders, pp 18–41Google Scholar
  18. Hoffman JM, Lyu Y, Pletcher SD, Promislow DE (2017) Proteomics and metabolomics in ageing research: from biomarkers to systems biology. Essays Biochem 61(3):379–388CrossRefGoogle Scholar
  19. Hooten NN, Abdelmohsen K, Gorospe M, Ejiogu N, Zonderman AB, Evans MK (2010) microRNA expression patterns reveal differential expression of target genes with age. PLoS ONE 5(5):e10724CrossRefGoogle Scholar
  20. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):3156CrossRefGoogle Scholar
  21. Huang J, Xie Y, Sun X, Zeh HJ III, Kang R, Lotze MT, Tang D (2015) DAMPs, ageing, and cancer: the ‘DAMP Hypothesis’. Ageing Res Rev 24:3–16CrossRefGoogle Scholar
  22. Jylhävä J, Kotipelto T, Raitala A, Jylhä M, Hervonen A, Hurme M (2011) Aging is associated with quantitative and qualitative changes in circulating cell-free DNA: the Vitality 90+ study. Mech Ageing Dev 132(1–2):20–26CrossRefGoogle Scholar
  23. Kaushik S, Cuervo AM (2015) Proteostasis and aging. Nat Med 21(12):1406–1415CrossRefGoogle Scholar
  24. Kim J, Kim KM, Noh JH, Yoon JH, Abdelmohsen K, Gorospe M (2016) Long noncoding RNAs in diseases of aging. Biochimica et Biophysica Acta (BBA)-Gene Regul Mech 1859(1):209–221CrossRefGoogle Scholar
  25. Kumar S, Vijayan M, Bhatti JS, Reddy PH (2017) MicroRNAs as peripheral biomarkers in aging and age-related diseases. In: Progress in molecular biology and translational science, vol 146, pp 47–94. Academic PressGoogle Scholar
  26. Labbadia J, Morimoto RI (2015) The biology of proteostasis in aging and disease. Annu Rev Biochem 84:435–464CrossRefGoogle Scholar
  27. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R (2003) Age-specific relevance of usual blood pressure to vascular mortality. Lancet 361(9366):1391–1392CrossRefGoogle Scholar
  28. Li X, Khanna A, Li N, Wang E (2011) Circulatory miR-34a as an RNA-based, noninvasive biomarker for brain aging. Aging (Albany NY) 3(10):985–1002CrossRefGoogle Scholar
  29. Liu Z, Burgess S, Wang Z, Deng W, Chu X, Cai J, Zhu Y, Shi J, Xie X, Wang Y, Jin L (2017) Corrigendum: associations of triglyceride levels with longevity and frailty: a Mendelian randomization analysis. Sci Rep 7:43981CrossRefGoogle Scholar
  30. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217CrossRefGoogle Scholar
  31. Marcourakis T, Camarini R, Kawamoto EM, Scorsi LR, Scavone C (2008) Peripheral biomarkers of oxidative stress in aging and Alzheimer’s disease. Dementia Neuropsychol 2(1):2–8CrossRefGoogle Scholar
  32. Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF (1993) Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol Off J Am Neurol Assoc Child Neurol Soc 34(4):609–616Google Scholar
  33. Meder B, Backes C, Haas J, Leidinger P, Stähler C, Großmann T, Vogel B, Frese K, Giannitsis E, Katus HA, Meese E (2014) Influence of the confounding factors age and sex on microRNA profiles from peripheral blood. Clin Chem 60(9):1200–1208CrossRefGoogle Scholar
  34. Montoliu I, Scherer M, Beguelin F, DaSilva L, Mari D, Salvioli S, Martin FPJ, Capri M, Bucci L, Ostan R, Garagnani P (2014) Serum profiling of healthy aging identifies phospho-and sphingolipid species as markers of human longevity. Aging (Albany NY) 6(1):9CrossRefGoogle Scholar
  35. Olivieri F, Capri M, Bonafè M, Morsiani C, Jung HJ, Spazzafumo L, Viña J, Suh Y (2017) Circulating miRNAs and miRNA shuttles as biomarkers: perspective trajectories of healthy and unhealthy aging. Mech Ageing Dev 165:162–170CrossRefGoogle Scholar
  36. Olivieri F, Spazzafumo L, Santini G, Lazzarini R, Albertini MC, Rippo MR, Galeazzi R, Abbatecola AM, Marcheselli F, Monti D, Ostan R (2012) Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev 133(11–12):675–685CrossRefGoogle Scholar
  37. Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, Reinmaa E, Sutphin GL, Zhernakova A, Schramm K, Wilson YA, Kobes S, Tukiainen T, Ramos YF, Göring HH, Fornage M, Liu Y, Gharib SA, Stranger BE, De Jager PL, Aviv A, Levy D, Murabito JM, Munson PJ, Huan T, Hofman A, Uitterlinden AG, Rivadeneira F, van Rooij J, Stolk L, Broer L, Verbiest MM, Jhamai M, Arp P, Metspalu A, Tserel L, Milani L, Samani NJ, Peterson P, Kasela S, Codd V, Peters A, Ward-Caviness CK, Herder C, Waldenberger M, Roden M, Singmann P, Zeilinger S, Illig T, Homuth G, Grabe HJ, Völzke H, Steil L, Kocher T, Murray A, Melzer D, Yaghootkar H, Bandinelli S, Moses EK, Kent JW, Curran JE, Johnson MP, Williams-Blangero S, Westra HJ, McRae AF, Smith JA, Kardia SL, Hovatta I, Perola M, Ripatti S, Salomaa V, Henders AK, Martin NG, Smith AK, Mehta D, Binder EB, Nylocks KM, Kennedy EM, Klengel T, Ding J, Suchy-Dicey AM, Enquobahrie DA, Brody J, Rotter JI, Chen YD, Houwing-Duistermaat J, Kloppenburg M, Slagboom PE, Helmer Q, den Hollander W, Bean S, Raj T, Bakhshi N, Wang QP, Oyston LJ, Psaty BM, Tracy RP, Montgomery GW, Turner ST, Blangero J, Meulenbelt I, Ressler KJ, Yang J, Franke L, Kettunen J, Visscher PM, Neely GG, Korstanje R, Hanson RL, Prokisch H, Ferrucci L, Esko T, Teumer A, van Meurs JB, Johnson AD (2015) The transcriptional landscape of age in human peripheral blood. Nat Commun 6:8570CrossRefGoogle Scholar
  38. Porter KA (1957) Effect of homologous bone marrow injections in X-irradiated rabbits. British J Exp Pathol 38(4):401Google Scholar
  39. Prospective Studies Collaboration (2007) Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55 000 vascular deaths. Lancet 370(9602):1829–1839CrossRefGoogle Scholar
  40. Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, Kolosov A, Ostrovskiy A, Cantor C, Vijg J, Zhavoronkov A (2016) Deep biomarkers of human aging: application of deep neural networks to biomarker development. Aging (Albany NY) 8(5):1021–1030CrossRefGoogle Scholar
  41. Rübe CE, Fricke A, Widmann TA, Fürst T, Madry H, Pfreundschuh M, Rübe C (2011) Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS ONE 6(3):e17487CrossRefGoogle Scholar
  42. Sanada F, Taniyama Y, Muratsu J, Otsu R, Shimizu H, Rakugi H, Morishita R (2018) Source of chronic inflammation in aging. Front Cardiovasc Med 5:12CrossRefGoogle Scholar
  43. Sarwar N, Danesh J, Eiriksdottir G, Sigurdsson G, Wareham N, Bingham S, Boekholdt SM, Khaw KT, Gudnason V (2007) Triglycerides and the risk of coronary heart disease: 10 158 incident cases among 262 525 participants in 29 Western prospective studies. Circulation 115(4):450–458CrossRefGoogle Scholar
  44. Schram MT, Euser SM, De Craen AJ, Witteman JC, Frölich M, Hofman A, Jolles J, Breteler MM, Westendorp RG (2007) Systemic markers of inflammation and cognitive decline in old age. J Am Geriatr Soc 55(5):708–716CrossRefGoogle Scholar
  45. Semba RD, Nicklett EJ, Ferrucci L (2010) Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol Ser A Biomed Sci Med Sci 65(9):963–975CrossRefGoogle Scholar
  46. Serna E, Gambini J, Borras C, Abdelaziz KM, Belenguer A, Sanchis P, Avellana JA, Rodriguez-Manas L, Vina J (2012) Centenarians, but not octogenarians, up-regulate the expression of microRNAs. Sci Rep 2:961CrossRefGoogle Scholar
  47. Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15(7):397CrossRefGoogle Scholar
  48. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci 102(15):5618–5623CrossRefGoogle Scholar
  49. Sohal RS (1991) Hydrogen peroxide production by mitochondria may be a biomarker of aging. Mech Ageing Dev 60(2):189–198CrossRefGoogle Scholar
  50. Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40(12):1250–1258CrossRefGoogle Scholar
  51. Tammen SA, Dolnikowski GG, Ausman LM, Liu Z, Kim KC, Friso S, Choi SW (2014) Aging alters hepatic DNA hydroxymethylation, as measured by liquid chromatography/mass spectrometry. J Cancer Prev 19(4):301–308CrossRefGoogle Scholar
  52. Tang B, Dean B, Thomas EA (2011) Disease-and age-related changes in histone acetylation at gene promoters in psychiatric disorders. Transl Psychiatry 1(12):e64CrossRefGoogle Scholar
  53. Zhang R, Wang Y, Ye K, Picard M, Gu Z (2017) Independent impacts of aging on mitochondrial DNA quantity and quality in humans. BMC Genom 18(1):890CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • I. A. Solovev
    • 1
    • 2
    Email author
  • M. V. Shaposhnikov
    • 1
  • Alexey Moskalev
    • 1
    • 2
    • 3
    • 4
  1. 1.Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of SciencesSyktyvkarRussian Federation
  2. 2.Department of Ecology, Institute of Natural SciencesSyktyvkar State UniversitySyktyvkarRussian Federation
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyRussian Federation
  4. 4.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations